BiTe recently emerges as a promising candidate material for the next generation of mid-wave to long-wave infrared photodetection owing to its exceptionally narrow bandgap (approximately 0.2 eV) and the favorable photoelectronic properties. In particular, its topological insulator structure is safeguarded by time-reversal symmetry, leading to electronic structures with distinct surface and bulk states as well as distinctive optoelectronic properties. This study examines the infrared detection mechanism of BiTe across various thicknesses, aiming to elucidate the transport behavior and characteristics of internal carriers in BiTe under the complex interplay between the bulk state and surface states. BiTe films at various thicknesses were synthesized pulsed laser deposition with varied number of pulses which determines the actual thickness. The bandgap and the photoelectric response mechanism of BiTe at different layer thicknesses were investigated, and the charge carrier transport dynamics across layers were clarified. To summarize, this study offers a theoretical basis for advancing photoelectric detection devices designed to regulate BiTe at distinct thicknesses.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr05067cDOI Listing

Publication Analysis

Top Keywords

infrared detection
8
surface states
8
states bite
8
mechanism bite
8
bite
7
unraveling infrared
4
detection properties
4
properties bite
4
bite depending
4
depending thickness
4

Similar Publications

BiTe recently emerges as a promising candidate material for the next generation of mid-wave to long-wave infrared photodetection owing to its exceptionally narrow bandgap (approximately 0.2 eV) and the favorable photoelectronic properties. In particular, its topological insulator structure is safeguarded by time-reversal symmetry, leading to electronic structures with distinct surface and bulk states as well as distinctive optoelectronic properties.

View Article and Find Full Text PDF

Significance: Coronary artery disease is the leading cause of death worldwide, accounting for 16% of all deaths. A common treatment is coronary artery bypass grafting (CABG), though up to 12% of bypass grafts fail during surgery. Early detection of graft failure by intraoperative graft patency assessment could prevent severe complications.

View Article and Find Full Text PDF

Background: is a widely used medicinal fungus whose quality is influenced by various factors, making traditional chemical detection methods complex and economically challenging. This study addresses the need for fast, noninvasive testing methods by combining hyperspectral imaging with machine learning to predict polysaccharide and ergosterol levels in cap and powder.

Methods: Hyperspectral images in the visible near-infrared (385-1009 nm) and short-wave infrared (899-1695 nm) ranges were collected, with ergosterol measured by high-performance liquid chromatography and polysaccharides assessed via the phenol-sulfuric acid method.

View Article and Find Full Text PDF

Predicting meat quality, especially dark, firm and dry meat, as well as muscle fat prior to slaughter, presents a challenge in practice. Medical as well as high-frequency ultrasound applications can be utilized to predict body composition and meat quality aspects. Ultrasounds are non-invasive, rapid-to-operate in vivo and show high correlations to the animal production traits being estimated.

View Article and Find Full Text PDF

Tench () is a warm-temperate, freshwater benthic fish with often unpleasant odors and flavors which result from its natural habitat. These characteristics may deter consumers; therefore, their removal would enhance the fish's palatability and market appeal. Thus, tench were grown in an aquaculture center and subjected to a clean water depuration system in which six sampling points were carried out at 0 h, 12 h, 24 h, 48 h, 72 h, and 96 h.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!