In order to relate nanoparticle properties to function, fast and detailed particle characterization is needed. The ability to characterize nanoparticle samples using optical microscopy techniques has drastically improved over the past few decades; consequently, there are now numerous microscopy methods available for detailed characterization of particles with nanometric size. However, there is currently no "one size fits all" solution to the problem of nanoparticle characterization. Instead, since the available techniques have different detection limits and deliver related but different quantitative information, the measurement and analysis approaches need to be selected and adapted for the sample at hand. In this tutorial, we review the optical theory of single particle scattering and how it relates to the differences and similarities in the quantitative particle information obtained from commonly used label-free microscopy techniques, with an emphasis on nanometric (submicron) sized dielectric particles. Particular emphasis is placed on how the optical signal relates to mass, size, structure, and material properties of the detected particles and to its combination with diffusivity-based particle sizing. We also discuss emerging opportunities in the wake of new technology development, including examples of adaptable python notebooks for deep learning image analysis, with the ambition to guide the choice of measurement strategy based on various challenges related to different types of nanoparticle samples and associated analytical demands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nr03860f | DOI Listing |
Nanoscale
March 2025
Department of Physics, University of Gothenburg, Gothenburg, Sweden.
In order to relate nanoparticle properties to function, fast and detailed particle characterization is needed. The ability to characterize nanoparticle samples using optical microscopy techniques has drastically improved over the past few decades; consequently, there are now numerous microscopy methods available for detailed characterization of particles with nanometric size. However, there is currently no "one size fits all" solution to the problem of nanoparticle characterization.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China.
Single-bacterium diagnostic methods with unprecedented precision and rapid turnaround times are promising tools for facilitating the transition from empirical treatment to personalized anti-infection treatment. Terahertz (THz) radiation, a cutting-edge technology for identifying pathogens, enables the label-free and non-destructive detection of intermolecular vibrational modes and bacterial dielectric properties. However, this individual dielectric property-based detection and the mismatched spatial resolution are limited for the single-bacterium identification of various species of pathogens.
View Article and Find Full Text PDFPLoS One
March 2025
Department of Physics, Portland State University, Portland, Oregon, United States of America.
The ability of microbial active motion, morphology, and optical properties to serve as biosignatures was investigated by in situ video microscopy in a wide range of extreme field sites where such imaging had not been performed previously. These sites allowed for sampling seawater, sea ice brines, cryopeg brines, hypersaline pools and seeps, hyperalkaline springs, and glaciovolcanic cave ice. In all samples except the cryopeg brine, active motion was observed without any sample treatment.
View Article and Find Full Text PDFBioelectrochemistry
February 2025
Chemistry Faculty, School of Sciences, University of Tehran, Tehran, Iran.; Endocrinology & Metabolism Research Center, Tehran University of Medical Sciences, Tehran, Iran; Dept. of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, Canada. Electronic address:
This study presents a novel, label-free electrochemical immunosensor for the detection of vascular endothelial growth factor (VEGF), a crucial tumor biomarker. The immunosensor was developed by electrochemical deposition of gold nanoparticles-reduced graphene oxide (AuNPs-rGO) nanocomposite on glassy carbon (GC) and screen-printed carbon (SPC) electrodes. A specific monoclonal antibody against VEGF was immobilized on the electrode surface through a carbodiimide coupling reaction.
View Article and Find Full Text PDFJ Pharm Biomed Anal
February 2025
Department of Chemistry, Faculty of Science, Hacettepe University, Ankara 06800, Turkey.
The development of functional interfaces for healthcare applications is in great demand to perform sensitive and reliable testing. For this purpose, in the present study, the use of transition metal dichalcogenides (TMDCs) combined with carbon nanotubes modified pencil graphite electrode (PGE) was demonstrated for fish sperm double-stranded deoxyribonucleic acid (fsDNA) detection. The advanced system consisted of molybdenum disulfide (MoS), tungsten disulfide (WS), and multi-walled carbon nanotubes (MWCNTs), which exhibited superior and fascinating electrochemical properties on PGE as a result of synergetic effect occurred between the materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!