Non-Orthogonal Multiple Access (NOMA) is the successive multiple-access methodologies for modern communication devices. Energy Efficiency (EE) is suggested in the NOMA system. In dynamic network conditions, the consideration of NOMA shows high computational complexity that minimizes the EE to degrade the system performance. This research suggested EE for the Multi-Carrier NOMA (MC-NOMA) models by optimization algorithm. The main scope of this research tends to improve the EE by Hybrid of Sewing Training and Lemur Optimization for optimizing the system parameters. The improvement made in this developed HSTLO algorithm can provide significant impact on MC-NOMA system, which it renders better user capacity while effectively optimizing the system parameters. Moreover, the Dilated Dense Recurrent Neural Network (DDRNN) model is developed. Employing the improvement in the deep learning model for the MC-NOMA system could effectively manage and enhance the system performance. Considering the DDRNN model can leverage to provide better generalization outcomes in different network scenarios that ensures to provide fast and reliable solutions compared to existing methods. Addressing the energy consumption problems in this research study will be analysed to show the advancement in MC-NOMA system that help to enhance the system performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/0954898X.2025.2461046 | DOI Listing |
J Cell Sci
March 2025
Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
Mitochondria perform diverse functions, such as producing ATP through oxidative phosphorylation, synthesizing macromolecule precursors, maintaining redox balance, and many others. Given this diversity of functions, we and others have hypothesized that cells maintain specialized subpopulations of mitochondria. To begin addressing this hypothesis, we developed a new dual-purification system to isolate subpopulations of mitochondria for chemical and biochemical analyses.
View Article and Find Full Text PDFMol Pharm
March 2025
Merck & Co., Inc., Rahway, New Jersey 07065, United States.
This is the fourth paper in a series describing an inhalation biopharmaceutics classification system (iBCS), an initiative supported by the Product Quality Research Institute. The paper examines the application of the inhalation Biopharmaceutics Classification System (iBCS) through the drug discovery, development, and postapproval phases for orally inhaled drug products (OIDP) and for the development of generic OIDPs. We consider the implication of the iBCS class in terms of product performance and identify the practical gaps that must be filled to enable the classification system to be adopted into day-to-day practice.
View Article and Find Full Text PDFPlant Signal Behav
December 2025
Department of General Psychology, University of Padova, Padova, Italy.
Pea plants depend on external structures to reach the strongest light source. To do this, they need to perceive a potential support and to flexibly adapt the movement of their motile organs (e.g.
View Article and Find Full Text PDFLangmuir
March 2025
School of Material Science and Engineering, University of Jinan, Jinan, 250022, PR China.
The construction of heterostructures promotes extending the light adsorption range of graphitic carbon nitride (g-CN) materials, improving the photogenerated charge carrier separation/transfer efficiency for attaining much enhanced performances. Because defective tungsten oxide (WO) materials possess rich composition/morphology and an extended light response in the near-infrared region, WO is a quite popular nanocomponent for modifying g-CN, forming heterostructures that can be used for various photocatalytic applications involving water splitting, CO reduction, NO removal, HO generation, and related chemical to fuel conversion reactions. In this review, important aspects of WO/g-CN heterostructure photocatalysts are reviewed to provide paradigms for composition adjustment, structural design, and photocatalytic applications of these materials.
View Article and Find Full Text PDFSmall
March 2025
Department of Applied Chemistry, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, State Key Laboratory of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
Electrocatalytic hydrogenation (ECH) of quinoline provides an eco-friendly and prospective route to achieve the highly value-added generation of 1,2,3,4-tetrahydroquinoline (THQ). Co element has been proven to be the efficient catalytic site for ECH of quinoline, but the rational regulation of the electronic structure of active Co site to improve the activity is still a challenge. Herein, the hierarchical core-shell structure consisting of NiCo-MOF nanosheets encapsulated Cu(OH) nanorods (Cu(OH)@CoNi-MOF) is constructed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!