Rechargeable aqueous batteries based on metallic anodes hold tremendous potential of high energy density enabled by the combination of relatively low working potential and large capacity while retaining the intrinsic safety nature and economical value of aqueous systems; However, the realization of these promised advantages relies on the identification of an ideal metal anode chemistry with all these merits. In this review, the emerging Sn metal anode chemistry is examined as such an anode candidate in both acidic and alkaline media, where the inertness of Sn toward hydrogen evolution, flat low voltage profile, and low polarization make it a unique metal anode for aqueous batteries. From a panoramic viewpoint, the key challenges and detrimental issues of Sn metal batteries are discussed, including dead Sn formation, self-discharge, and electrolyte degradation, as well as strategies for mitigating these issues by constructing robust Sn anodes. New design approaches for more durable and reliable Sn metal batteries are also discussed, with the aim of fully realizing the potential of Sn anode chemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202417757 | DOI Listing |
Adv Mater
March 2025
Pritzker School of Molecular Engineering, The University of Chicago, 5801 South Ellis Avenue, Chicago, IL, 60637, USA.
Rechargeable aqueous batteries based on metallic anodes hold tremendous potential of high energy density enabled by the combination of relatively low working potential and large capacity while retaining the intrinsic safety nature and economical value of aqueous systems; However, the realization of these promised advantages relies on the identification of an ideal metal anode chemistry with all these merits. In this review, the emerging Sn metal anode chemistry is examined as such an anode candidate in both acidic and alkaline media, where the inertness of Sn toward hydrogen evolution, flat low voltage profile, and low polarization make it a unique metal anode for aqueous batteries. From a panoramic viewpoint, the key challenges and detrimental issues of Sn metal batteries are discussed, including dead Sn formation, self-discharge, and electrolyte degradation, as well as strategies for mitigating these issues by constructing robust Sn anodes.
View Article and Find Full Text PDFSmall Methods
March 2025
School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China.
Metal carbides are considered attractive lithium-ion battery (LIB) anode materials. Their potential practical application, however, still needs nanostructure optimization to further enhance the Li-storage capacity, especially under large current densities. Herein, a nanoporous structured multi-metal carbide is designed, which is encapsulated in a 3D free-standing nanotubular graphene film (MnNiCoFe-MoC@NG).
View Article and Find Full Text PDFChemistry
March 2025
Shanghai Normal University, College of Chemistry and Materials Science, 200234, Shanghai, CHINA.
Photo-stimulated Polymers have garnered significant attention for their potential applications ranging from optical memory to sensing. Herein, by changing coordination metal and the position of nitrogen atom in pyridine-based photo-stimulated ligand, we successfully synthesised a novel photo-stimulated copper-based MOF (Cu-MOF) using 9,10-bis(di(pyridine-3-yl)methylene)-9,10-dihydroanthracene as the photo-stimulated ligand. Structural analysis revealed a 3D porous architecture, offering a distinct advantage over previously reported 1D coordination polymer using similar photo-stimulated ligand.
View Article and Find Full Text PDFAdv Sci (Weinh)
March 2025
Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
The emergence of two-dimensional (2D) materials has catalyzed significant advancements in the fields of piezotronics and piezo-phototronics, owing to their exceptional mechanical, electronic, and optical properties. This review provides a comprehensive examination of key 2D piezoelectric and piezo-phototronic materials, including transition metal dichalcogenides, hexagonal boron nitride (h-BN), and phosphorene, with an emphasis on their unique advantages and recent research progress. The underlying principles of piezotronics and piezo-phototronics in 2D materials is discussed, focusing on the fundamental mechanisms which enable these phenomena.
View Article and Find Full Text PDFNutrients
March 2025
Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523-1582, USA.
Although the importance of magnesium for overall health and physiological function is well established, its influence on exercise performance is less clear. The primary study objective was to determine the influence of short-term magnesium supplementation on cycle ergometer exercise performance. The hypothesis was that magnesium would elicit an ergogenic effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!