Plant epicuticular waxes (EW) play a critical role in defending against biotic and abiotic stresses. Notably, onions () present a distinctive case where the mutant with defect in leaf and stalk EW showed resistance to thrips compared with the wild type with integral EW. We identified a premature stop codon mutation in the gene, an ortholog of gene in that has been proved essential for the biosynthesis of very long-chain fatty acids (VLCFAs), in the onions with glossy leaf and stalks in our experiments. The data hinted at the possibility that this mutation might impede the elongation process of VLCFAs from C28 to C32, thereby hindering the production of 16-hentriacontanone, a primary constituent of onion EW. Transcriptomic analysis revealed substantial alterations in expression of genes in the pathways related not only to lipid synthesis and transport but also to signal transduction and cell wall modification in glossy mutants. Meanwhile, metabolomic profiling indicates a remarkable increase in flavonoid accumulation and a significant reduction in soluble sugar content in glossy mutants. These findings suggested that the enhanced resistance of glossy mutants to thrips might be a consequence of multiple physiological changes, and our integrated multiomics analysis highlighting the regulatory role of in these processes. Our study has yielded valuable insights into the biosynthesis of onion EW and has provided an initial hypothesis for the mechanisms underlying thrip resistance. These findings hold significant promise for the breeding programs of thrip-resistant onion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11896967 | PMC |
http://dx.doi.org/10.1093/hr/uhaf006 | DOI Listing |
Hortic Res
April 2025
School of Ecology and Environment, Northwestern Polytechnical University, 1 Dongxiang Road, Changan District, Xi'an 710129, China.
Plant epicuticular waxes (EW) play a critical role in defending against biotic and abiotic stresses. Notably, onions () present a distinctive case where the mutant with defect in leaf and stalk EW showed resistance to thrips compared with the wild type with integral EW. We identified a premature stop codon mutation in the gene, an ortholog of gene in that has been proved essential for the biosynthesis of very long-chain fatty acids (VLCFAs), in the onions with glossy leaf and stalks in our experiments.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
The bHLH (basic helix-loop-helix) transcription factor AtCFLAP2 regulates epidermal wax accumulation, but the underlying molecular mechanism remains unknown. We obtained ( homologous to ) from a mutant with up-curling leaves () and epidermal wax deficiency via map-based cloning. BnUC1 contains a point mutation (N200S) in the conserved dimerization domain.
View Article and Find Full Text PDFInt J Mol Sci
June 2024
Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), Beijing 100097, China.
Cuticular waxes are essential for protecting plants from various environmental stresses. serves as an excellent model for investigating the regulatory mechanisms underlying cuticular wax synthesis with notable epidermal wax characteristics. A combination of gas chromatography-mass spectrometry (GC-MS) metabolite analysis and transcriptomics was used to investigate variations in metabolites and gene expression patterns between the wild type (WT) and glossy mutant type () of .
View Article and Find Full Text PDFTheor Appl Genet
May 2024
College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China.
BrBCAT1 encoding a branched-chain amino acid aminotransferase was responsible for the glossy trait, which was verified by allelic mutants in Chinese cabbage. The glossy characteristic, thanks to the epicuticular wax crystal deficiency, is an excellent commodity character for leafy vegetables. Herein, two allelic glossy green mutants, wdm11 and wdm12, were isolated from an ethyl methane sulfonate (EMS)-mutagenized population of Chinese cabbage, and the mutant phenotype was recessive inherited.
View Article and Find Full Text PDFPlant Sci
February 2024
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China. Electronic address:
Surface lipids in plants include cutin, cuticular wax and suberin. sn-Glycerol-3-phosphate acyltransferases (GPATs) facilitate the acylation of sn-glycerol-3-phosphate (G3P) utilizing a fatty acyl group from acyl-coenzyme A (acyl-CoA) or acyl-acyl carrier protein (acyl-ACP) as substrates for the biosynthesis of plant extracellular lipids such as suberin and cutin. Here we found that Arabidopsis GPAT4 and GPAT8 are specifically expressed in endodermis cells of roots where suberin was accumulated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!