Honey bees extract sticky material from the exudates of different plants which transform afterwards to propolis. Propolis from several global locations has been shown to contain a wide variety of polyphenolic chemicals. Recent studies have revealed that propolis possesses antioxidant, anti-inflammatory, and immunomodulatory abilities. In laboratory animal studies, it has been demonstrated that propolis can enhance the functioning of the antioxidant defense system and decrease the activity of nuclear factor-kappa B. As a result, they can effectively alleviate the damage caused by exercise. One of the main flavonoids found in propolis, quercetin, has been demonstrated to enhance muscle mitochondrial biogenesis and exercise capacity. Propolis may aid athletes in preventing oxidative and inflammatory damage to their muscles during exercise and enhance their athletic performance. The goal of the current review was to evaluate how propolis consumption affected the molecular signaling associated with antioxidant/oxidant state, pro/anti-inflammatory cytokines, and anaerobic/aerobic endurance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11896820 | PMC |
http://dx.doi.org/10.3389/fnut.2025.1539701 | DOI Listing |
Pest Manag Sci
March 2025
Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China.
Insect metamorphosis is a complex developmental process regulated by microRNAs (miRNAs) and hormonal signaling pathways. Key genes driving insect ontogenic changes are precisely modulated by miRNAs, which interact with 20-hydroxyecdysone (20E) and juvenile hormone (JH) to coordinate developmental transitions. Over the past decade, significant progress has been made in understanding miRNA biogenesis, their regulatory roles in gene expression, and their involvement in critical biological processes, including metamorphosis and chitin metabolism.
View Article and Find Full Text PDFCancer Biol Ther
December 2025
Department of Surgery, Hamad Medical Corporation, Doha, Qatar.
Early and precise diagnosis of cancer is pivotal for effective therapeutic intervention. Traditional diagnostic methods, despite their reliability, often face limitations such as invasiveness, high costs, labor-intensive procedures, extended processing times, and reduced sensitivity for early-stage detection. Electrochemical biosensing is a revolutionary method that provides rapid, cost-effective, and highly sensitive detection of cancer biomarkers.
View Article and Find Full Text PDFOMICS
March 2025
Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India.
Intracellular calcium signaling is a cornerstone in cell biology and a key molecular target for human health and disease. Calcium/calmodulin dependent protein kinase kinases, CAMKK1 and CAMKK2 are serine/threonine kinases that contribute to the regulation of intracellular calcium signals in response to diverse stimuli. CAMKK1 generally has stable dynamics, whereas CAMKK2 dysregulation triggers oncogenicity and neurological disorders.
View Article and Find Full Text PDFAdv Mater
March 2025
Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of energy and power engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
Flexible bioelectronic interfaces with adhesive properties are essential for advancing modern medicine and human-machine interactions. However, achieving both stable adhesion and non-damaging detachment remains a significant challenge. In this study, a lithium bond-mediated molecular cascade hydrogel (LMCH) for bioelectronic interfaces is designed, which facilitates robust adhesion at the tissue level and permits atraumatic detachment for repositioning as required.
View Article and Find Full Text PDFBiol Reprod
March 2025
The Institute of Cardiovascular Sciences, School of Basic Medical Sciences; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
Mammalian sexual reproduction critically relies on the generation of haploid gametes following a specialized cell division process known as meiosis. Here, we demonstrate that N-6 Adenine-Specific DNA methyltransferase 1 (N6AMT1) plays a crucial role in the progression of meiosis during spermatogenesis, as follows. N6AMT1 was expressed in germ cells throughout the entire process of spermatogenesis, with a peak in mRNA levels in spermatocytes at the prophase I stage of meiosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!