Gut microbiota therapy in gastrointestinal diseases.

Front Cell Dev Biol

Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, Nursing Key Laboratory of Sichuan Province, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China.

Published: February 2025

The human gut microbiota, consisting of trillions of microorganisms, plays a crucial role in gastrointestinal (GI) health and disease. Dysbiosis, an imbalance in microbial composition, has been linked to a range of GI disorders, including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), celiac disease, and colorectal cancer. These conditions are influenced by the interactions between the gut microbiota, the host immune system, and the gut-brain axis. Recent research has highlighted the potential for microbiome-based therapeutic strategies, such as probiotics, prebiotics, fecal microbiota transplantation (FMT), and dietary modifications, to restore microbial balance and alleviate disease symptoms. This review examines the role of gut microbiota in the pathogenesis of common gastrointestinal diseases and explores emerging therapeutic approaches aimed at modulating the microbiome. We discuss the scientific foundations of these interventions, their clinical effectiveness, and the challenges in their implementation. The review underscores the therapeutic potential of microbiome-targeted treatments as a novel approach to managing GI disorders, offering personalized and alternative options to conventional therapies. As research in this field continues to evolve, microbiome-based interventions hold promise for improving the treatment and prevention of gastrointestinal diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897527PMC
http://dx.doi.org/10.3389/fcell.2025.1514636DOI Listing

Publication Analysis

Top Keywords

gut microbiota
16
gastrointestinal diseases
12
gut
4
microbiota therapy
4
gastrointestinal
4
therapy gastrointestinal
4
diseases human
4
human gut
4
microbiota
4
microbiota consisting
4

Similar Publications

Zinc Ion Dyshomeostasis in Autism Spectrum Disorder.

Nutr Res Rev

March 2025

Department of Physiology, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box No. 15551, Al Ain, United Arab Emirates.

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with significant social, communicative, and behavioral challenges, and its prevalence is increasing globally at an alarming rate. Children with ASD often have nutritional imbalances, and multiple micronutrient deficiencies. Among these, zinc (Zn) deficiency is prominent and has gained extensive scientific interest over the past few years.

View Article and Find Full Text PDF

Scope: The uremic toxin trimethylamine N-oxide (TMAO) accumulates in patients with chronic kidney disease (CKD) and is associated with its progression, cardiovascular disease, and other complications. The gut microbiota produces TMAO from substrates mainly found in red meat, eggs, and dairy. However, some saltwater fish also contain high levels of TMAO.

View Article and Find Full Text PDF

Introduction: The aim of this study is to investigate the effects of supplementing () on hybrid grouper ( ♀ × ♂), with a particular focus on its impact on growth performance, blood composition, intestinal antioxidant capacity, gut microbiota, tight junction protein (ZO-1) expression, and inflammatory gene expression. The study seeks to uncover the potential health benefits of C. butyricum supplementation for hybrid grouper.

View Article and Find Full Text PDF

The multi-kingdom microbiome catalog of the chicken gastrointestinal tract.

Biosaf Health

April 2024

CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China.

Chicken is an important food animal worldwide and plays an important role in human life by providing meat and eggs. Despite recent significant advances in gut microbiome studies, a comprehensive study of chicken gut bacterial, archaeal, and viral genomes remains unavailable. In this study, we constructed a chicken multi-kingdom microbiome catalog (CMKMC), including 18,201 bacterial, 225 archaeal, and 33,411 viral genomes, and annotated over 6,076,006 protein-coding genes by integrating 135 chicken gut metagenomes and publicly available metagenome-assembled genomes (MAGs) from ten countries.

View Article and Find Full Text PDF

Background: The gut microbiota plays a pivotal role in various metabolic disorders. Orlistat has shown beneficial effects on weight loss and metabolism, but its direct impact on the gut microbiota has not been extensively reported. Thus, this study aimed to explore the effects of orlistat on the gut microbiota in mice with high-fat diet-induced obesity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!