The human gut microbiota, consisting of trillions of microorganisms, plays a crucial role in gastrointestinal (GI) health and disease. Dysbiosis, an imbalance in microbial composition, has been linked to a range of GI disorders, including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), celiac disease, and colorectal cancer. These conditions are influenced by the interactions between the gut microbiota, the host immune system, and the gut-brain axis. Recent research has highlighted the potential for microbiome-based therapeutic strategies, such as probiotics, prebiotics, fecal microbiota transplantation (FMT), and dietary modifications, to restore microbial balance and alleviate disease symptoms. This review examines the role of gut microbiota in the pathogenesis of common gastrointestinal diseases and explores emerging therapeutic approaches aimed at modulating the microbiome. We discuss the scientific foundations of these interventions, their clinical effectiveness, and the challenges in their implementation. The review underscores the therapeutic potential of microbiome-targeted treatments as a novel approach to managing GI disorders, offering personalized and alternative options to conventional therapies. As research in this field continues to evolve, microbiome-based interventions hold promise for improving the treatment and prevention of gastrointestinal diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897527 | PMC |
http://dx.doi.org/10.3389/fcell.2025.1514636 | DOI Listing |
Nutr Res Rev
March 2025
Department of Physiology, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box No. 15551, Al Ain, United Arab Emirates.
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with significant social, communicative, and behavioral challenges, and its prevalence is increasing globally at an alarming rate. Children with ASD often have nutritional imbalances, and multiple micronutrient deficiencies. Among these, zinc (Zn) deficiency is prominent and has gained extensive scientific interest over the past few years.
View Article and Find Full Text PDFMol Nutr Food Res
March 2025
Graduate Program in Food, Nutrition and Health - Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rio de Janeiro (RJ), Brazil.
Scope: The uremic toxin trimethylamine N-oxide (TMAO) accumulates in patients with chronic kidney disease (CKD) and is associated with its progression, cardiovascular disease, and other complications. The gut microbiota produces TMAO from substrates mainly found in red meat, eggs, and dairy. However, some saltwater fish also contain high levels of TMAO.
View Article and Find Full Text PDFFront Immunol
March 2025
Fisheries College of Jimei University, Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Xiamen, China.
Introduction: The aim of this study is to investigate the effects of supplementing () on hybrid grouper ( ♀ × ♂), with a particular focus on its impact on growth performance, blood composition, intestinal antioxidant capacity, gut microbiota, tight junction protein (ZO-1) expression, and inflammatory gene expression. The study seeks to uncover the potential health benefits of C. butyricum supplementation for hybrid grouper.
View Article and Find Full Text PDFBiosaf Health
April 2024
CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China.
Chicken is an important food animal worldwide and plays an important role in human life by providing meat and eggs. Despite recent significant advances in gut microbiome studies, a comprehensive study of chicken gut bacterial, archaeal, and viral genomes remains unavailable. In this study, we constructed a chicken multi-kingdom microbiome catalog (CMKMC), including 18,201 bacterial, 225 archaeal, and 33,411 viral genomes, and annotated over 6,076,006 protein-coding genes by integrating 135 chicken gut metagenomes and publicly available metagenome-assembled genomes (MAGs) from ten countries.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
March 2025
Department of Endocrinology & Metabolism, Shenzhen University General Hospital, Shenzhen, China.
Background: The gut microbiota plays a pivotal role in various metabolic disorders. Orlistat has shown beneficial effects on weight loss and metabolism, but its direct impact on the gut microbiota has not been extensively reported. Thus, this study aimed to explore the effects of orlistat on the gut microbiota in mice with high-fat diet-induced obesity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!