Background: The biological reproductive process requires the precise coordination of annual and daily signals to adapt to environmental shifts. Humans and animals have developed shared neuroendocrine systems that have adapted to process daily and seasonal light signals within the hypothalamic-pituitary -gonadal axis. However, the stability of circadian and seasonal biological processes is at risk due to industrialization and contemporary round-the-clock lifestyles. These threats include skipping breakfast, excessive artificial illumination during inappropriate hours because of irregular work schedules, nighttime urban lighting, and widespread environmental pollution from endocrine-disrupting chemicals. This review aimed to explore the interplay between lifestyle factors, circadian rhythms, and reproductive functions.

Methods: This review examined the reciprocal influences of circadian clocks on reproductive hormones, exploring the underlying mechanisms and their implications for fertility and reproductive health. We emphasized key findings regarding molecular clock components, endocrine pathways, and the critical importance of synchronizing circadian rhythms with hormonal cycles.

Main Findings: The intersection of reproductive endocrinology and circadian biology reveals complex interactions between hormonal regulation and circadian rhythms. Circadian rhythm misalignments due to environmental factors, including late-night work and skipping breakfast, negatively impact endocrine and reproductive functions.

Conclusions: More strategies are needed to mitigate the effects of circadian disruption on reproductive functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897534PMC
http://dx.doi.org/10.1002/rmb2.12641DOI Listing

Publication Analysis

Top Keywords

circadian rhythms
12
circadian
9
skipping breakfast
8
reproductive
7
influence lifestyle
4
lifestyle circadian
4
circadian clock
4
clock reproduction
4
reproduction background
4
background biological
4

Similar Publications

Background: The biological reproductive process requires the precise coordination of annual and daily signals to adapt to environmental shifts. Humans and animals have developed shared neuroendocrine systems that have adapted to process daily and seasonal light signals within the hypothalamic-pituitary -gonadal axis. However, the stability of circadian and seasonal biological processes is at risk due to industrialization and contemporary round-the-clock lifestyles.

View Article and Find Full Text PDF

Obesity is linked to a higher risk of cognitive impairment. The objective of this single blind randomized trial was to evaluate the impact of dark sweet cherry (DSC) intake on cognitive function in obese adults. Participants (body mass index (BMI): 30-40 kg/m, >18 years, without chronic diseases and/or antibiotic use) consumed 200 mL of DSC drink with 3 g of cherry powder ( = 19) or an isocaloric placebo drink ( = 21) twice daily for 30 days.

View Article and Find Full Text PDF

Modified Cortisol Circadian Rhythm: The Hidden Toll of Night-Shift Work.

Int J Mol Sci

February 2025

Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.

The circadian rhythm of cortisol, a key hormone essential for maintaining metabolic balance and stress homeostasis, is profoundly disrupted by night-shift work. This narrative review examines the physiological mechanisms underlying cortisol regulation, the effects of shift work on its circadian rhythm, the associated health risks, and potential mitigation strategies. Night-shift work alters the natural secretion pattern of cortisol, leading to dysregulation of the hypothalamic-pituitary-adrenal axis, which in turn can contribute to metabolic disorders, cardiovascular diseases, and impaired cognitive function.

View Article and Find Full Text PDF

Thaumatin-like Gene Confers to Seed Oil Content and Resistance to in Arabidopsis.

Int J Mol Sci

February 2025

Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.

The synergistic optimization of yield and abiotic/biotic resistance is of great significance in plant breeding. However, the genomic mechanisms underlying the selection for environmental adaptation and yield-related traits remain poorly understood. In this study, we identified a thaumatin-like protein (TLP), AtTLP1b, which was shown to pleiotropically regulate seed oil content and resistance to by gene knockout and overexpressing experiments in Arabidopsis.

View Article and Find Full Text PDF

Changes in Mitochondrial Transcriptional Rhythms and Depression-like Behavior in the Hippocampus of IL-33-Overexpressing Mice.

Int J Mol Sci

February 2025

Key Laboratory of Pathobiology, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.

Neuroinflammation is involved in the development of depression and may induce depression-like behaviors by affecting metabolism through interactions with circadian rhythms. As the hub of metabolism, mitochondria are regulated by various types of metabolism and release signals that regulate cellular functions. In this study, we performed transcriptomic analysis of the hippocampus of IL-33-overexpressing mice to provide new ideas to explore the pathogenesis of inflammation-mediated depression at the transcriptional level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!