A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Low-level neurostimulation of the renal nerves as a potential therapeutic strategy for hypertension treatment. | LitMetric

Low-level neurostimulation of the renal nerves as a potential therapeutic strategy for hypertension treatment.

Front Pharmacol

Division of Pulmonology, Allergy and Immunology, Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States.

Published: February 2025

Background: Neurostimulation is an emerging treatment for conditions like hypertension. The renal nerves, comprising sensory afferent and sympathetic efferent fibers, are crucial for blood pressure (BP) regulation. The inhibitory reno-renal reflex, where central integration of renal sensory input reduces sympathetic outflow and systemic BP, presents a promising target for neurostimulation interventions. We therefore investigated renal nerve stimulation (RNS) as a potential hypertension therapy.

Methods: Anesthetized male spontaneously hypertensive rats (SHRs) were subjected to low-level RNS at 0.5 mA pulse amplitude and 0.5 ms pulse width for 30 s delivered to the left intact renal nerve at 2.5 and 5.0 Hz. Mean arterial pressure (MAP), heart rate (HR), hindquarter blood flow (HQF), and ipsilateral renal cortical blood flow (RCF) were recorded. Hindquarter resistance (HQR) and renal cortical resistance (RCR) were derived from MAP and flow values.

Results: RNS significantly reduced MAP, with similar depressor responses at 2.5 (27 ± 3 mmHg) and 5.0 Hz (37 ± 8 mmHg). RNS substantially increased HQF and reduced HQR, with comparable effects at both frequencies. A 5-Hz stimulus markedly reduced RCF and increased RCR of the ipsilateral kidney. When the stimulation frequency was lowered to 2.5 Hz, the changes in RCF and RCR were nearly indistinguishable from baseline.

Conclusion: Low-level RNS effectively lowers BP in the SHR model of hypertension and may offer a promising therapeutic alternative for hypertension treatment. Physiologically, the observed clinically relevant reductions in BP were primarily due to reductions in vascular resistance. Adjusting stimulus levels can achieve desired hypotensive responses without compromising ipsilateral renal blood supply, typically affected by direct renal sympathetic fiber stimulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897555PMC
http://dx.doi.org/10.3389/fphar.2025.1529844DOI Listing

Publication Analysis

Top Keywords

renal
9
renal nerves
8
hypertension treatment
8
renal nerve
8
low-level rns
8
blood flow
8
ipsilateral renal
8
renal cortical
8
hypertension
5
rns
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!