Cancer Targeting Radiopeptidomimetics in Molecular Nuclear Medicine.

Mol Pharm

Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085, India.

Published: March 2025

Peptides are highly receptor-affine molecules exhibiting suitable pharmacokinetics. Additionally, low-cost production, simple protocols allowing easy modifications, and tolerance toward harsh reaction conditions make peptides ideal ligands for preparation of radiopharmaceuticals for cancer detection and treatment. However, natural peptides being substrates for enzymes are susceptible to proteolysis, which limits the lifetime and the target uptake. Therefore, the majority of peptides are not able to progress beyond preclinical research. Advancement of peptides for clinical analysis needs modification to instill improved features. Continuous increase and further expected rise in cancer cases in the next decade require development of more disease-directed and promising radiopharmaceuticals. Redesigned peptide, mimicking the original peptide with similar or improved affinity and high metabolic stability, shall have significant edge. This review outlines the design of peptidomimetics by incorporation of D-amino acids (inverso); reversal of D-amino acid sequence (retro-inverso), and reversal of L-amino acid sequence (retro). Clinically successful radiopeptidomimetics prepared using the three approaches have been elaborated to elucidate the important role of peptidomimetics in cancer management.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.4c01180DOI Listing

Publication Analysis

Top Keywords

acid sequence
8
peptides
5
cancer
4
cancer targeting
4
targeting radiopeptidomimetics
4
radiopeptidomimetics molecular
4
molecular nuclear
4
nuclear medicine
4
medicine peptides
4
peptides highly
4

Similar Publications

Protein evolution has shaped enzymes that maintain stability and function across diverse thermal environments. While sequence variation, thermal stability and conformational dynamics are known to influence an enzyme's thermal adaptation, how these factors collectively govern stability and function across diverse temperatures remains unresolved. Cytosolic malate dehydrogenase (cMDH), a citric acid cycle enzyme, is an ideal model for studying these mechanisms due to its temperature-sensitive flexibility and broad presence in species from diverse thermal environments.

View Article and Find Full Text PDF

Injectable Nanocomposite Hydrogels for Intervertebral Disc Degeneration: Combating Oxidative Stress, Mitochondrial Dysfunction, and Ferroptosis.

Adv Healthc Mater

March 2025

Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.

Intervertebral disc degeneration (IVDD) is a major cause of low back pain, where oxidative stress and mitochondrial dysfunction are key contributors. Additionally, ferroptosis, an iron-dependent form of cell death, is identified as a critical mechanism in IVDD pathogenesis. Herein, the therapeutic potential of gallic acid (GA)-derived PGA-Cu nanoparticles, enhanced with functional octapeptide (Cys-Lys-His-Gly-d-Arg-d-Tyr-Lys-Phe, SS08) to build the mitochondria-targeted nanoparticles (PGA-Cu@SS08), and embedded within a hydrogel matrix to form a nanocomposite hydrogel, is explored.

View Article and Find Full Text PDF

Background: Although the SARS-CoV-2 and dengue viruses seriously endanger human health, there is presently no vaccine that can stop a person from contracting both viruses at the same time. In this study, four antigens from SARS-CoV-2 and dengue virus were tested for immunogenicity, antigenicity, allergenicity, and toxicity and chosen to predict dominant T- and B-cell epitopes.

Methods: For designing a multi-epitope vaccine, the sequences were retrieved, and using bioinformatics and immunoinformatics, the physicochemical and immunological properties, as well as secondary structures, of the vaccine were predicted and studied.

View Article and Find Full Text PDF

This study evaluated the efficacy and safety of camrelizumab combined with platinum-based chemotherapy (taxanes [T] or fluorouracil agents [F] plus platinum [P] drugs) as the first-line treatment in advanced esophageal squamous cell carcinoma (ESCC), using immune repertoire sequencing (IRS) to explore treatment response mechanism. In this multi-center, prospective cohort study, 88 patients received camrelizumab plus TP or FP, achieving a 1-year progression-free survival of 56.8% and overall survival of 68.

View Article and Find Full Text PDF

Pigs are vital genetic mixing vessels for human and avian influenza viruses because their tracheal epitheliums possess both sialic acid α-2,6-Gal and α-2,3-Gal receptors. Cross-species transmission of influenza A viruses from swine to humans occurs occasionally. The first case of human infection with the Eurasian avian-like H1N1 swine influenza virus (EAH1N1 SIVs) genotype G4 was detected in Jiangsu Province, China, in February 2023, and backtracking epidemiological investigations did not reveal a clear source of the infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!