Cutting-Edge Therapy and Immune Escape Mechanisms in EBV-Associated Tumors.

Med Res Rev

Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.

Published: March 2025

Epstein-Barr virus (EBV), the first identified human tumor virus, significantly influences the immune microenvironment of associated cancers. EBV-induced expression of viral antigens by tumor cells triggers immune recognition and elicits a pro-inflammatory response. While mild inflammation may help eliminate malignant cells, intense inflammation can accelerate tumor progression. Moreover, EBV can establish lifelong latency in human hosts, characterized by low immunogenicity of its proteins and noncoding RNAs. This enables tumor cells to evade immune detection and impair immune cell function, disrupting immune homeostasis. Consequently, EBV-associated malignancies pose a considerable public health challenge globally, often complicating the prognosis of cancer patients under conventional treatment. With deeper research into the oncogenic expressions and mechanisms of EBV, novel targeted therapies against EBV are gaining prominence. This review discusses recent advancements in understanding how EBV helps tumor cells evade immune surveillance and induce immune dysfunction. It also examines the clinical potential of targeting EBV-associated tumors, providing fresh perspectives on the mechanisms and therapeutic strategies for these cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/med.22104DOI Listing

Publication Analysis

Top Keywords

tumor cells
12
immune
8
ebv-associated tumors
8
cells evade
8
evade immune
8
ebv
5
tumor
5
cutting-edge therapy
4
therapy immune
4
immune escape
4

Similar Publications

The ribophorin family, including RPN1, has been associated with tumor progression, but its specific role in pan-cancer dynamics remains unclear. Using data from TCGA, GTEx, and Ualcan databases, we investigated the relationship of RPN1 with prognosis, genomic alterations, and epigenetic modifications across various cancers. Differential analysis revealed elevated RPN1 expression in multiple cancer types, indicating a potential prognostic value.

View Article and Find Full Text PDF

Breast cancer (BC) is one of the most common malignant tumors among women, accounting for 24.5% of all cancer cases and leading to 15.5% of cancer-related mortality.

View Article and Find Full Text PDF

Introduction: Osteosarcoma, a highly aggressive bone cancer primarily affecting children and young adults, remains a significant challenge in clinical oncology. Metastasis stands as the primary cause of mortality in osteosarcoma patients. However, the mechanisms driving this process remain incompletely understood.

View Article and Find Full Text PDF

Introduction: Immunotherapy has rapidly become a primary treatment option for many lung cancer patients because of its success in treating this prevalent and deadly disease. However, the success of immunotherapy relies on overcoming the immunosuppressive tumour microenvironment, making remodelling this environment a potential strategy for lung cancer therapy. Research suggests that Toll-like receptor (TLR) agonists can impede tumour growth by promoting the conversion of tumour-associated macrophages into an M1-like state or enhancing dendritic cell development.

View Article and Find Full Text PDF

The abnormal tumor mechanical microenvironment due to specific cancer-associated fibroblasts (CAFs) subset and low tumor immunogenicity caused by inefficient conversion of active chemotherapeutic agents are two key obstacles that impede patients with desmoplastic tumors from achieving stable and complete immune responses. Herein, it is demonstrated that FAP-αCAFs-induced stromal stiffness accelerated tumor progression by precluding cytotoxic T lymphocytes. Subsequently, a cascade-responsive nanoprodrug capable of re-educating FAP-αCAFs and amplifying tumor immunogenicity for potentiated cancer mechanoimmunotherapy is ingeniously designed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!