Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Brain aging is a complex process involving genetic, neurodevelopmental, and environmental factors. Inherent features of this process are cellular senescence, the development of senescence-associated secretory phenotype (SASP), and prolonged inflammation.
Methods: Recently, progress has been made in understanding the biological roles of FPR2 receptors and their ligands in the mechanism of inflammation resolution (RoI) in the brain. However, the number of studies comparing the influence of prenatal stress (PS) on RoI in physiological aging and neurodegenerative disorders pathology is very limited, and the data need to be more consistent. Here, we examined whether PS can condition the pattern of age-dependent cognitive and RoI changes in the prefrontal cortex and hippocampus in wild-type and hAPPNL-F/NL-F KI male mice.
Results: We discovered that in aging, the memory deficits are accompanied by the limitation of the availability of pro-resolving FPR2 ligands, the rising proinflammatory microglia polarization, and inflammatory ligands mediated FPR2 overactivation. Moreover, the present study suggested the subtle role of the RoI deficits in creating brain cells' senescence and shifting the immunomodulators to the proinflammatory direction. PS has been revealed as a substantial factor modulating the profile of inflame-aging in a manner strongly determined by the age of animals and the brain structure under study, mainly in hAPPNL-F/NL-F KI male mice.
Conclusion: Our results identify the FPR2 receptors as a driver regulating the RoI process in the brain and highlight that PS has diversified the picture of age-dependent neurodegenerative pathology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/011570159X345385241004060055 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!