Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Chronic visceral hypersensitivity is associated with an overstressed pain response to noxious stimuli (hyperalgesia). Microbiota are active modulators of host biology and are implicated in the etiology of visceral hypersensitivity.
Objectives: we studied the association between the circulating mRNA transcriptome, the intensity of induced visceral pain (IVP), and variation in the oral microbiome among participants with and without baseline visceral hypersensitivity.
Methods: Transcriptomic profiles and microbial abundance were correlated with IVP intensity. Host mRNA and microbes associated with IVP were explored, linking variation in the microbiome to host RNA biology.
Results: 259 OTUs were found to be associated with IVP through correlation to differential expression of 471 genes in molecular pathways related to inflammation and neural mechanisms, including Rho and PI3K/AKT pathways. The bacterial families Lachnospiraceae, Prevotellaceae, and Veillonellaceae showed the highest degree of association. Oral microbial profiles with reduced diversity were characteristic of participants with visceral hypersensitivity.
Conclusions: Our results suggest that the oral microbiome may be involved in systemic immune and inflammatory effects and play a role in nervous system and stem cell pathways. The interactions between visceral hypersensitivity, differentially expressed molecular pathways, and microbiota described here provide a framework for further work exploring the relationship between host and microbiome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/nu17050921 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!