Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Protein constitutes the primary nutrient in soy, and its modifications are intricately linked to the properties of the soy milk powder. This study employed six main commercial enzymes (bromelain, neutrase, papain, trypsin, flavourzyme, and alcalase) to investigate the impact of enzymatic hydrolysis on the structural and functional properties of soy protein isolate (SPI), as well as its influence on the physicochemical properties of soy milk powder. The findings indicated that each of enzymes exhibits distinct specificity, with the degree of hydrolysis following the order: alcalase > flavourzyme > papain > bromelain > neutrase > trypsin. Enzymatic hydrolysis facilitates the unfolding of SPI, leading to the exposure of chromogenic fluorophores and hydrophobic amino acid residues, which in turn promotes an increase in free sulfhydryl content. Concurrently, this process induces the transformation of -helix and -sheet into -turn and random coil. The enzyme modification enhances the solubility, emulsification, and foaming activities of SPI and significantly augment its antioxidant properties ( < 0.05). However, this enzymatic treatment adversely affects the stability of its emulsification and foaming properties. Subsequent to enzymatic hydrolysis, soy milk powder demonstrated a reduction in particle size and an improvement in solubility, which significantly enhanced its flavor profile. In summary, alcalase offers substantial advantages in augmenting the functional properties of SPI and increasing the solubility of soy milk powder. However, this process adversely affects the flavor profile of soy milk powder, a consequence attributed to the broad hydrolysis specificity of alcalase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/foods14050906 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!