Shrimp are highly favored by consumers for their delicious taste and rich nutritional value. However, reports of allergic reactions caused by shrimp and its derivatives have been increasing, significantly impacting consumer health and posing a growing global food safety concern. This article introduces the structure and biochemical characteristics of major allergenic proteins in shrimp, including tropomyosin (TM), arginine kinase, sarcoplasmic calcium-binding protein, myosin light chain, troponin C, and hemocyanin. Currently, there is no effective treatment for shrimp allergies, and prevention is mainly achieved by avoiding consumption. The study of shrimp allergen sensitization reduction technology is of great significance to the development of hypoallergenic or desensitized products. The article provides a detailed overview of the effects of common processing techniques, including physical, chemical, biological, and combined methods, on the allergenicity of shrimp allergens; for instance, the binding rate to immunoglobulin E (IgE) was reduced by 73.59% after treating TM with high pressure (500 MPa) at 55 °C for 10 min and the recognition rate of TM to IgE decreased by 89.4% on average after treating TM with pepsin (30 μg/mL, pH 2) for 2 h. These techniques provide references for the development of hypoallergenic aquatic products or desensitized foods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/foods14050895 | DOI Listing |
Foods
March 2025
Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China.
Shrimp are highly favored by consumers for their delicious taste and rich nutritional value. However, reports of allergic reactions caused by shrimp and its derivatives have been increasing, significantly impacting consumer health and posing a growing global food safety concern. This article introduces the structure and biochemical characteristics of major allergenic proteins in shrimp, including tropomyosin (TM), arginine kinase, sarcoplasmic calcium-binding protein, myosin light chain, troponin C, and hemocyanin.
View Article and Find Full Text PDFJ Agric Food Chem
March 2025
SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
Covalent modification is an effective strategy for reducing allergenicity to individual allergens, but there are few studies on this strategy modifying specific amino acids within epitopes under the influence of food matrix. This study used fucoidan to covalently modify shrimp () and combined mass spectrometry and bioinformatics techniques to explore epitope modification. The results showed that lower concentrations (<2.
View Article and Find Full Text PDFJ Agric Food Chem
March 2025
SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
Food allergy has become a global food safety issue, and inducing tolerance of the immune system to allergens is seen as an effective way to address this problem. In this study, shrimp () was covalently modified with fucoidan to explore its potential as an oral tolerance inducer. The results showed that this strategy not only had no adverse effect on the growth of mice but also achieved significant immune tolerance induction effects.
View Article and Find Full Text PDFJ Agric Food Chem
February 2025
School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
Tropomyosin (TM) is a major allergen in aquatic products. The aim of this study was to analyze the allergenicity of TM from different aquatic products based on conformational and linear epitopes. Structural and allergenicity analyses of TM were conducted using intrinsic fluorescence, UV absorption spectra, circular dichroism, and animal experiments.
View Article and Find Full Text PDFFood Chem
May 2025
School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China. Electronic address:
Tropomyosin (TM), the primary allergen in crustacean aquatic products, has excellent thermal and digestive stability. In this work, the changes in digestive resistance of TM and allergenicity of TM digestion products induced by ultrasound-assisted cold plasma (UCP) treatment were investigated. The stability of TM to simulated digestion were reduced, especially the simulated intestinal fluid (SIF) digestive resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!