A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of Wet Fractionation Conditions and Pulsed Electric Field on Arabinoxylan and Protein Recovery from Maize. | LitMetric

Maize wet fractionation by-products are primarily used as feed but offer potential for food applications. Arabinoxylans (AXs) and proteins are particularly valuable due to their network-forming properties, which depend on their molecular structure. This study assessed the effect of the steeping conditions (acid type and pH variation) combined with a pulsed electric field (PEF) as a strategy for recovering these polymers, while also evaluating their effect on the recovery yield, fraction composition, and key AX characteristics. The physical properties were studied in selected fractions to investigate the process-induced structural changes. Lactic acid and hydrochloric acid (pH 2.5) were most effective in enhancing AX and protein recovery in fiber-rich (FF) and protein-rich (PF) fractions, respectively, while acetic acid exhibited the lowest efficiency. However, bound polyphenols were best retained in the FF when lactic acid was used, indicating the lowest structural damage to AXs, compared to other acids and using a higher pH. Additional PEF pre-treatment significantly enhanced the release of proteins, dietary fiber, and fat from the FF while inducing physical modifications to the fractions (PF: higher protein unfolding, FF: improved water-binding, pasting when using PEF). These findings highlight the potential of optimizing the processing conditions to adjust the recovery of proteins and AXs from maize, while minimally affecting their functionality.

Download full-text PDF

Source
http://dx.doi.org/10.3390/foods14050760DOI Listing

Publication Analysis

Top Keywords

wet fractionation
8
pulsed electric
8
electric field
8
protein recovery
8
lactic acid
8
acid
5
fractionation conditions
4
conditions pulsed
4
field arabinoxylan
4
arabinoxylan protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!