The increasing demand for titanium implants necessitates improved longevity. Plasma-sprayed hydroxyapatite coatings enhance implant osseointegration but are susceptible to delamination. Alternatively, anodized hydroxyapatite coatings have shown greater adhesion strengths. The present study aimed to develop anodized hydroxyapatite coatings on titanium using commercial calcium-fortified fruit juice as a calcium source. Varying the electrolyte compositions enabled the formation of four oxide groups with different predominate calcium compounds. Each oxide's morphology, crystallinity, chemistry, molecular structure, and adhesion quality were compared and contrasted. Nanoscale SEM images revealed a progression from porous surface oxide to white surface deposits to petal-like hydroxyapatite structures with the changing anodization electrolytes. Oxide thickness evaluations showed progression from a single-layered oxide with low Ca-, P-, and Mg-dopant incorporations to bi-layered oxide structures with increased Ca-, P-, and Mg-dopant incorporation with changing electrolytes. The bi-layered oxide structures exhibited a titanium-dioxide-rich inner layer and calcium-compound-rich outer layers. Furthermore, indentation analyses confirmed good adhesion quality for three oxides. For the predominate hydroxyapatite oxides, FTIR analyses showed carbonate substitutions indicating the presence of bone-like apatite formation, and ICP-OES analyses revealed prolonged Ca and Mg release over 30 days. These Mg-enhanced carbonated apatite coatings show much promise to improve osseointegration and future implant lifetimes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ma18051163 | DOI Listing |
Materials (Basel)
March 2025
Department of Biomedical Materials Science, University of Mississippi Medical Center, Jackson, MS 39216, USA.
The increasing demand for titanium implants necessitates improved longevity. Plasma-sprayed hydroxyapatite coatings enhance implant osseointegration but are susceptible to delamination. Alternatively, anodized hydroxyapatite coatings have shown greater adhesion strengths.
View Article and Find Full Text PDFMolecules
February 2025
Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland.
Piezoelectric materials, due to their ability to generate an electric charge in response to mechanical deformation, are becoming increasingly attractive in the engineering of bone and neural tissues. This manuscript reports the effects of the addition of nanohydroxyapatite (nHA), introduction of gold nanoparticles (AuNPs) via sonochemical coating, and collector rotation speed on the formation of electroactive phases and biological properties in electrospun nanofiber scaffolds consisting of poly(vinylidene fluoride) (PVDF). FTIR, WAXS, DSC, and SEM results indicate that introduction of nHA increases the content of electroactive phases and fiber alignment.
View Article and Find Full Text PDFPolymers (Basel)
February 2025
Restorative and Aesthetic Dentistry Department, College of Dentistry, University of Baghdad, Baghdad 1417, Iraq.
Background: Regeneration dentistry demonstrates significant challenges due to the complexity of different dental structures. This study aimed to investigate osteogenic differentiation of human pulp stem cells (hDPSCs) cultured on a 3D-printed poly lactic acid (PLA) scaffold coated with nano-hydroxyapatite (nHA) and naringin (NAR) as a model for a dental regenerative.
Methods: PLA scaffolds were 3D printed into circular discs (10 × 1 mm) and coated with nHA, NAR, or both.
Front Bioeng Biotechnol
February 2025
Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Introduction: Head and neck squamous cell carcinoma (HNSCC) frequently invades the jaw, and surgical treatment often leads to bone defects requiring reconstruction with titanium plates. To enhance the anti-tumor and bone regeneration properties of titanium, a selenium-modified hydroxyapatite coating was developed on titanium surfaces.
Methods: Selenium-modified hydroxyapatite coatings was fabricated using micro-arc oxidation (MAO).
Photothermal therapy (PTT) has emerged as an effective cancer treatment strategy, which utilizes photothermal agents that accumulate at tumor sites and induce localized hyperthermia when irradiated. Near-infrared II (NIR II) fluorophores, such as the polymethine cyanine-based photothermal dye IR1061, exhibit higher temporal resolution and better tissue penetration, thereby making them promising candidates for PTT. However, challenges such as the low water solubility and short circulation times of these dyes limit their biological applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!