High-quality 2-inch aluminum nitride (AlN) crystals were grown using a double-zone resistance heating system, and the growth mechanism of AlN bulk crystals was further investigated. It was found that during the growth process, the vapor pressure at the growth interface, as well as the quality and structure of the seed crystal, was closely related to the growth conditions. The 2-inch AlN crystals were characterized using high-resolution X-ray diffraction (HRXRD) and optical microscopy. Optical microscopy observations of different regions on the native surface of the crystals revealed several morphologies, including regular step flow, irregular step flow, and domain-like structures. Comparisons showed that areas of the crystal surface with regular step-flow morphology exhibited high crystal quality, whereas the crystal quality decreased progressively as the step-flow morphology diminished. Therefore, the crystal quality can be preliminarily assessed through the surface morphology, providing guidance for improving the crystal growth process.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ma18051147DOI Listing

Publication Analysis

Top Keywords

crystal quality
12
native surface
8
2-inch aluminum
8
aluminum nitride
8
aln crystals
8
growth process
8
optical microscopy
8
step flow
8
step-flow morphology
8
crystal
6

Similar Publications

Tetramethylurea Based Intermediate Phase Engineering for Efficient and Stable Perovskite Solar Cells.

Small

March 2025

Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China.

Perovskite solar cells (PSCs) are emerging photovoltaic devices renowned for their high efficiency and low cost. Efficient and stable PSCs depend on high-quality perovskite films, which are strongly influenced by the excellent nucleation and growth. The choice of solvent is critical for the crystallization behavior of perovskite films.

View Article and Find Full Text PDF

A Parameter-Driven Approach to Modulating Chemical Composition in Prussian Blue Analogues Cathodes for Sodium-ion Batteries.

Chemistry

March 2025

University of Electronic Science and Technology of China, School of Materials and Energy, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, CHINA.

This study explores how various experimental factors, such as temperature, viscosity, and stirring speed, affect Prussian blue analogues (PBAs) material's structural properties and electroneutrality. These factors influence key attributes like sodium ions, vacancies, and water content, which is governed by electroneutrality. Higher temperatures, faster stirring, low viscosity, and high Na+ concentration enhance Na+ incorporation because of the sufficient Na+ supplement, leading to a dense monoclinic structure with fewer vacancies and lower water content.

View Article and Find Full Text PDF

High-quality 2-inch aluminum nitride (AlN) crystals were grown using a double-zone resistance heating system, and the growth mechanism of AlN bulk crystals was further investigated. It was found that during the growth process, the vapor pressure at the growth interface, as well as the quality and structure of the seed crystal, was closely related to the growth conditions. The 2-inch AlN crystals were characterized using high-resolution X-ray diffraction (HRXRD) and optical microscopy.

View Article and Find Full Text PDF

Thin Cells of Polymer-Modified Liquid Crystals Described by Voronoi Diagrams.

Materials (Basel)

February 2025

Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK.

We investigated patterns formed during the polymerization process of bifunctional monomers in a liquid crystal for both large polymer concentrations (polymer-dispersed liquid crystals, PDLC) and small concentrations (polymer-stabilized liquid crystals, PSLC). The resulting experimental patterns are reminiscent of Voronoi diagrams, so a reverse Voronoi algorithm was developed that provides the seed locations of cells, thus allowing a computational reproduction of the experimental patterns. Several metrics were developed to quantify the commonality between the faithful experimental patterns and the idealized and generated ones.

View Article and Find Full Text PDF

Schiff Base Compounds Derived from 5-Methyl Salicylaldehyde as Turn-On Fluorescent Probes for Al Detection: Experimental and DFT Calculations.

Molecules

February 2025

School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China.

Using 5-methyl salicylaldehyde () as a reactant to react with different amines, 2-aminobenzimidazole (), 2-aminobenzothiazole (), and 2-aminopyridine (), respectively, three types of Schiff base fluorescent probes - were designed and synthesized for selective detection of Al in aqueous media. The structure of the compounds was acquired by H NMR, C NMR, and X-ray single-crystal diffraction. Furthermore, their photochromic and fluorescent behaviors have been investigated systematically by fluorescence spectra.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!