This study investigates the mechanical properties and microstructure of basalt fiber (BF) and nanoalumina (NA)-modified ultra-high-performance concrete with recycled aggregates (UHPC-RA) under high-temperature conditions. The effects of different replacement rates of recycled aggregates (RAs), BF content, and NA content on the compressive strength, splitting tensile strength, and elastic modulus were evaluated at ambient temperatures and after exposure to 200 °C, 400 °C, 600 °C, and 800 °C. The results show that mechanical properties decrease with temperature rise, but specimens containing BF exhibited improved crack resistance and better high-temperature integrity. The incorporation of NA enhanced the thermal stability and heat resistance of the concrete. Digital image correlation (DIC) was used to monitor real-time surface deformation, and scanning electron microscopy (SEM) analysis revealed improved microstructure with reduced porosity and cracks. This study demonstrates that the combination of BF and NA significantly enhances the high-temperature performance of UHPC-RA, which holds promising potential for applications in environments subjected to elevated temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ma18051072DOI Listing

Publication Analysis

Top Keywords

recycled aggregates
12
basalt fiber
8
fiber nanoalumina
8
mechanical properties
8
mechanical microstructural
4
microstructural performance
4
performance uhpc
4
uhpc recycled
4
aggregates modified
4
modified basalt
4

Similar Publications

Recycled aggregate concrete (RAC), which is made by replacing all natural coarse and fine aggregates with recycled aggregate, plays a significant role in improving the recycling rate of construction materials, reducing carbon emissions from construction, and alleviating ecological degradation issues. However, due to its low strength and significant shrinkage and deformation problems, RAC has limited application. The effort of fiber type, fiber admixture, and fiber hybridization on autogenous shrinkage were studied to improve the structural safety of building materials and broaden the application of RAC.

View Article and Find Full Text PDF

Research on the Solidification Structure and Thermoplasticity of CJ5L Recycled Stainless Steel.

Materials (Basel)

March 2025

School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China.

The objective of this study is to investigate the effect of the solidification microstructure of CJ5L Recycled Stainless Steel in the cast state on its thermoplasticity. Therefore, the residual ferrite, solidification structure, and high-temperature thermoplasticity in both Recycled and Non-Recycled steel ingots are examined. The principal experimental techniques employed include SEM, OM, EPMA, and EDS.

View Article and Find Full Text PDF

Influence of Aggregate Composition on the Properties of Recycled Concrete and Improving Performance Using Special Additives.

Materials (Basel)

February 2025

University of Pecs, Faculty of Engineering and Information Technology, Structural Diagnostics and Analyses Research Team, H-7624 Pécs, Hungary.

The principles of the circular economy and the effective utilization of construction and demolition waste are becoming increasingly important, as evidenced by a growing body of research in this field. However, studies focusing on the waterproofing properties and setting times of recycled concrete derived from various construction and demolition waste sources remain scarce. This research investigates the characteristics of recycled aggregates from different origins and explores how these characteristics influence the properties of concrete.

View Article and Find Full Text PDF

Pavement humidity warping is a critical factor limiting the application of PPRBAC on low-volume roads. A nonlinear wet-warping stress formula for PPRBAC slabs has been derived based on previous experimental results, and the finite element method was employed to develop a single-board model in order to verify the accuracy of the analytical solution. Subsequently, the finite difference method, in conjunction with the finite element method, was employed to investigate the calculation methodology for wet-warping stress in PPRBAC slabs during service.

View Article and Find Full Text PDF

This study investigates the mechanical properties and microstructure of basalt fiber (BF) and nanoalumina (NA)-modified ultra-high-performance concrete with recycled aggregates (UHPC-RA) under high-temperature conditions. The effects of different replacement rates of recycled aggregates (RAs), BF content, and NA content on the compressive strength, splitting tensile strength, and elastic modulus were evaluated at ambient temperatures and after exposure to 200 °C, 400 °C, 600 °C, and 800 °C. The results show that mechanical properties decrease with temperature rise, but specimens containing BF exhibited improved crack resistance and better high-temperature integrity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!