Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Materials (Basel)
TEMA-Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
Published: February 2025
In the current study, the integration of finite element simulation and machine learning is used to find the optimal combination of processing parameters in the directed energy deposition of SS316L. To achieve this, the FE simulation was validated against previously implemented research, and a series of simulations were conducted. Three inputs, namely laser power, scanning speed, and laser beam radius, and two outputs, namely residual stress and displacement, were considered. To run the machine learning model, artificial neural networks and a non-dominated sorting genetic algorithm were applied to determine the optimal combination of processing parameters. In addition, the current study underscores the novelty of combining FE simulation and machine learning methods, which provides enhanced precision and efficiency in controlling residual stress and displacement (geometrical deviation) in the Directed Energy Deposition (DED) process. Then, the results obtained via machine learning were validated with confirmatory tests and reported. The findings offer a practical solution for process parameter optimization, contributing to the progression of additive manufacturing technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ma18051039 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.