A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Lower-Energy Pathway for the Creation of Multifunctional Silicon Suboxide Films. | LitMetric

The possibility of inducing structural crosslinking and densification of plasma-deposited SiO networks by controlling low-energy reaction mechanisms was investigated. For this, films were deposited for 300 s from HMDSO (2%), O (86%) and Ar (12%) mixtures at a working pressure of 15.7 Pa. A radiofrequency signal was used to excite the plasma in a configuration so as to not deliberately induce ion bombardment of the growing layers. The plasma excitation power was varied (100 to 300 W) to promote changes in the deposition mechanisms, which were investigated from deposition rate and layer thickness, chemical structure, elemental composition, topography, roughness, hardness, elastic modulus, corrosion potential, corrosion current density and porosity of the films. Under the experimental conditions studied, inorganic SiO thin films (x = 1.8-1.9) with a low carbon content were deposited. The increase in the applied power during the deposition process reduced the number of silanol groups in the coatings, due to dangling bonds recombination by structural crosslinks, which avoided hydroxyl incorporation and silanol formation. As a consequence, the structure became harder, more compact and corrosion resistant.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ma18050962DOI Listing

Publication Analysis

Top Keywords

mechanisms investigated
8
lower-energy pathway
4
pathway creation
4
creation multifunctional
4
multifunctional silicon
4
silicon suboxide
4
films
4
suboxide films
4
films possibility
4
possibility inducing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!