In regard to both natural aging and photoaging caused by UV radiation, a decrease in skin collagen and elastin fibers results in the loss of soft tissue volume. Biodegradable polymer fillers have been used to overcome this problem, but the slow rate of reconstruction and particle agglomeration has limited this approach. The DMSB01 filler, which consists of poly d-l-lactic acid (PDLLA) with a methoxy polyethylene glycol (mPEG) initiator, was created to address this issue. In this study, we assessed the reconstruction and dispersion of the DMSB01 filler in vitro, as well as its effect on collagen expression in rats. DMSB01 showed rapid reconstruction and excellent dispersion stability; gelation occurred within 5 min at 37 °C and remained stable. In an animal model, DMSB01 induced M2 macrophages, Transforming growth factor beta (TGF-β) expression, and significantly increased collagens I and III. Collagen recovery and wrinkle improvement were confirmed by the aging and photoaging models, and hematoxylin and eosin (H&E) staining was used to demonstrate the safety and biodegradability of DMSB01. DMSB01 was effective in terms of inducing collagen production and improving skin aging, and shows promise as an innovative ingredient to overcome the limitations of existing fillers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ijms26052369 | DOI Listing |
Int J Mol Sci
March 2025
Samyang Holdings Biopharmaceutical Group R&D Center, Seongnam 13488, Republic of Korea.
In regard to both natural aging and photoaging caused by UV radiation, a decrease in skin collagen and elastin fibers results in the loss of soft tissue volume. Biodegradable polymer fillers have been used to overcome this problem, but the slow rate of reconstruction and particle agglomeration has limited this approach. The DMSB01 filler, which consists of poly d-l-lactic acid (PDLLA) with a methoxy polyethylene glycol (mPEG) initiator, was created to address this issue.
View Article and Find Full Text PDFInt J Mol Sci
February 2025
School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
As a polyphenolic plant flavone, luteolin (Lut) is widely found in many medicinal plants, flowers, and vegetables. Although Lut has been shown to have the effect of preventing and treating skin photoaging, its role in preventing photoaging specifically induced by ultraviolet A (UVA) radiation remains underreported. In vivo, BALB/c mice were used as models for skin photoaging models and treated with Lut.
View Article and Find Full Text PDFAm J Clin Dermatol
March 2025
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Photoaging is the consequence of chronic exposure to solar irradiation, encompassing ultraviolet (UV), visible, and infrared wavelengths. Over time, this exposure causes cumulative damage, leading to both aesthetic changes and structural degradation of the skin. These effects manifest as rhytids, dyschromia, textural changes, elastosis, volume loss, telangiectasias, and hyperkeratosis, collectively contributing to a prematurely aged appearance that exceeds the skin's chronological age.
View Article and Find Full Text PDFJ Cosmet Dermatol
March 2025
Dermatology Hospital of Zhejiang Province, Huzhou, Zhejiang, China.
Background: In recent decades, our understanding of the pathogenesis and pathophysiology of skin photoaging has improved considerably, thereby enhancing preventive and management strategies. The bibliometric analysis demonstrates the chronological trends of publications, highlighting the most influential studies related to skin photoaging.
Objective: This study aims to identify and analyze the top 100 most-cited articles related to skin photoaging to offer bibliometric information.
Sci Total Environ
March 2025
Environmental Pollution Control Laboratory, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54 124, Greece. Electronic address:
The aim of this study was to investigate the sorption behavior of tire wear particles (TWP), that represent a significant fraction of microplastics (MP) in aquatic environment. Two emerging micropollutants frequently detected in aquatic environment, bisphenol A and 1H-benzotriazole, were used as model compounds. Batch adsorption experiments were conducted to study kinetics and thermodynamic equilibrium as well as the effect of pH and ionic strength.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!