Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ischemic stroke is a multifactorial disease that leads to brain tissue damage and severe neurological deficit. Transient middle cerebral artery occlusion (tMCAO) models are actively used for the molecular, genetic study of stroke. Previously, using high-throughput RNA sequencing (RNA-Seq), we revealed 3774 differentially expressed genes (DEGs) in the penumbra-associated region of the frontal cortex (FC) of rats 24 h after applying the tMCAO model. Here, we studied the gene expression pattern in the striatum that contained an ischemic focus. Striatum samples were obtained from the same rats from which we previously obtained FC samples. Therefore, we compared DEG profiles between two rat brain tissues 24 h after tMCAO. Tissues were selected based on magnetic resonance imaging (MRI) and histological examination (HE) data. As a result, 4409 DEGs were identified 24 h after tMCAO in striatum. Among them, 2609 DEGs were overlapped in the striatum and FC, whereas more than one thousand DEGs were specific for each studied tissue. Furthermore, 54 DEGs exhibited opposite changes at the mRNA level in the two brain tissues after tMCAO. Thus, the spatial regulation of the ischemic process in the ipsilateral hemisphere of rat brain at the transcriptome level was revealed. We believe that the targeted adjustment of the genome responses identified can be the key for the induction of regeneration processes in brain cells after stroke.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ijms26052347 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!