Oxidative stress-induced photoreceptor cell death is closely associated with the etiology of age-related macular degeneration (AMD), and sodium iodate (SI) has been widely used as an oxidant stimulus in AMD models to induce retinal pigment epithelium (RPE) and photoreceptor cell death. However, the mechanism underlying SI-induced photoreceptor cell death remains controversial and unclear. In this study, we elucidate that ferroptosis is a critical form of cell death induced by SI in photoreceptor-derived 661W cells. SI disrupts system Xc, leading to glutathione (GSH) depletion and triggering lipid peroxidation, thereby promoting ferroptosis in photoreceptor-derived 661W cells. Additionally, SI enhances intracellular Fe levels, which further facilitates reactive oxygen species (ROS) accumulation, making the 661W cells more susceptible to ferroptosis. Exogenous GSH, as well as specific inhibitors of ferroptosis such as Fer-1 and antioxidants like NAC, significantly attenuate SI-induced ferroptosis in photoreceptor-derived 661W cells. These findings provide new insights into the mechanisms of ferroptosis as a key pathway in SI-induced photoreceptor-derived 661W cell death.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms26052334DOI Listing

Publication Analysis

Top Keywords

photoreceptor-derived 661w
20
661w cells
20
cell death
20
ferroptosis photoreceptor-derived
12
photoreceptor cell
12
ferroptosis
7
661w
6
photoreceptor-derived
5
cells
5
cell
5

Similar Publications

Sodium Iodate-Induced Ferroptosis in Photoreceptor-Derived 661W Cells Through the Depletion of GSH.

Int J Mol Sci

March 2025

Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China.

Oxidative stress-induced photoreceptor cell death is closely associated with the etiology of age-related macular degeneration (AMD), and sodium iodate (SI) has been widely used as an oxidant stimulus in AMD models to induce retinal pigment epithelium (RPE) and photoreceptor cell death. However, the mechanism underlying SI-induced photoreceptor cell death remains controversial and unclear. In this study, we elucidate that ferroptosis is a critical form of cell death induced by SI in photoreceptor-derived 661W cells.

View Article and Find Full Text PDF

Ferroptosis, a form of iron-dependent programmed cell death, has emerged as a critical player in various diseases, including retinal degenerative disorders. Previous studies have highlighted that ferroptosis, triggered by all-trans-retinal (atRAL) accumulation in photoreceptor cells, contributes significantly to the pathogenesis of dry age-related macular degeneration (AMD) and autosomal recessive Stargardt's disease (STGD1). However, the underlying molecular mechanisms regulating this process remain poorly understood.

View Article and Find Full Text PDF

Sphingolipid biosynthetic inhibitor L-Cycloserine prevents oxidative-stress-mediated death in an in vitro model of photoreceptor-derived 661W cells.

Exp Eye Res

May 2024

Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Memphis VA Medical Center, Memphis, TN, 38104, USA; Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA. Electronic address:

Oxidative stress plays a pivotal role in the pathogenesis of several neurodegenerative diseases. Retinal degeneration causes irreversible death of photoreceptor cells, ultimately leading to vision loss. Under oxidative stress, the synthesis of bioactive sphingolipid ceramide increases, triggering apoptosis in photoreceptor cells and leading to their death.

View Article and Find Full Text PDF

Background: Blue light exposure is known to induce reactive oxygen species (ROS) production and increased endoplasmic reticulum stress, leading to apoptosis of photoreceptors. Maqui berry (Aristotelia chilensis) is a fruit enriched in anthocyanins, known for beneficial biological activities such as antioxidation. In this study, we investigated the effects of Maqui berry extract (MBE) and its constituents on the subcellular damage induced by blue light irradiation in mouse retina-derived 661W cells.

View Article and Find Full Text PDF

Calcium signalling is involved in many processes in mammalian retina, from development to mature functions and neurodegeneration. Although proteins involved in Ca entry in retinal cells have been well studied, less is known about Ca-clearance. Among the Ca pumps, plasma membrane Ca-ATPases (PMCAs) have been identified as key proteins extruding Ca across the plasma membrane with specific distribution in developing and adult retina.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!