A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Xanthohumol Sensitizes Melanoma Cells to Vemurafenib by Lowering Membrane Cholesterol and Increasing Membrane Fluidity. | LitMetric

Xanthohumol Sensitizes Melanoma Cells to Vemurafenib by Lowering Membrane Cholesterol and Increasing Membrane Fluidity.

Int J Mol Sci

UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims, CEDEX, France.

Published: March 2025

Chemoresistance remains one of the major obstacles to cancer treatment. The search for specific molecules that could improve cancer treatment has become one of the objectives of biomedical research. Identifying new natural molecules to enhance chemotherapy treatment or improve sensitization to conventional therapies has become a key objective. Here, we evaluated the effect of Xanthohumol (XN) extracted from hop on SKMEL-28 melanoma cells and their sensitization to vemurafenib (VEM) treatment. We measured the XN effect on cell viability and apoptosis. We also assessed the effect of XN on membrane fluidity and membrane cholesterol levels. Finally, we studied the impact of XN on cell sensitization to VEM. Here, we showed that XN reduced SKMEL-28 cell viability through an apoptotic mechanism. Our results demonstrated the potential role of XN in sensitizing cancer cells to VEM with a less toxic effect on non-tumor cells. A study of XN's molecular mechanism showed that XN was able to induce cholesterol depletion and increased fluidity in SKMEL-28 cancer cells. This leads to an increase in VEM incorporation. Here, we describe the importance of the strategy to modulate membrane fluidity by XN in order to significantly improve anticancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms26052290DOI Listing

Publication Analysis

Top Keywords

membrane fluidity
12
melanoma cells
8
membrane cholesterol
8
cancer treatment
8
cell viability
8
cancer cells
8
cells
5
membrane
5
xanthohumol sensitizes
4
sensitizes melanoma
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!