The respiratory epithelium maintains the barrier against inhaled harmful agents. When barrier failure occurs, as in several respiratory diseases, acute or chronic inflammation leading to destructive effects and exacerbations can occur. Macrolides are used to treat a spectrum of infections but are also known for off-label use. Some macrolides, particularly azithromycin (AZM), reduce exacerbations in chronic obstructive pulmonary disease (COPD), whereby its efficacy is thought to be due to its effects on inflammation and oxidative stress. In vitro data indicate that AZM reduces epithelial barrier failure, evidenced by increased transepithelial electrical resistance (TEER). Here, we compared the effects of macrolides on differentiation and barrier integrity in VA10 cells, a bronchial epithelial cell line for 14 and 21 days. Erythromycin, clarithromycin, roxithromycin, AZM, solithromycin, and tobramycin (an aminoglycoside) were analyzed using RNA sequencing, barrier integrity assays, and immunostaining to evaluate effects on the epithelium. All macrolides affected the gene expression of pathways involved in epithelial-to-mesenchymal transition, metabolism, and immunomodulation. Treatment with AZM, clarithromycin, and erythromycin raised TEER and induced phospholipid retention. AZM treatment was distinct in terms of enhancement of the epithelial barrier, retention of phospholipids, vesicle build-up, and its effect on gene sets related to keratinocyte differentiation and establishment of skin barrier.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms26052287DOI Listing

Publication Analysis

Top Keywords

epithelial barrier
12
bronchial epithelial
8
barrier
8
barrier failure
8
barrier integrity
8
macrolides
5
azm
5
non-antibacterial effects
4
effects azithromycin
4
azithromycin macrolides
4

Similar Publications

Thymol (THY) is a phenolic monoterpene compound that has garnered attention due to its various biological properties, including antioxidant, anti-inflammatory, and immune-regulatory effects. The purpose of this study was to determine the therapeutic and protective effects of THY in colitic mice, with a particular focus on the mechanisms involving gut microbiota. The results showed that early intervention with THY (40 and 80 mg/kg) not only alleviated the clinical symptoms and colonic damage in mice with dextran sodium sulfate (DSS)-induced colitis but also suppressed the colonic production of inflammatory cytokines (IL-1β, IL-6, and IL-18) and enhanced the expression of mucins (MUC1 and MUC2) and trefoil factor family 3 (TFF3), thereby improving the integrity of the intestinal epithelial barrier.

View Article and Find Full Text PDF

TTP as Tumor Suppressor and Inflammatory Regulator in Oral Carcinogenesis.

J Dent Res

March 2025

Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.

The stability of messenger RNA (mRNA) is controlled by proteins that bind to adenosine-uridine-rich sequences (AREs) in their 3' untranslated regions (3'UTR), known as AU-binding proteins. One of these proteins is tristetraprolin (TTP; encoded by ), which promotes degradation of mRNAs with AREs in their 3'UTR. TTP accelerates the decay of its target transcripts, many of which encode proinflammatory mediators that promote tumorigenesis.

View Article and Find Full Text PDF

TW01 Mitigates PM-Induced Lung Injury and Improves Gut Health in Mice.

Nutrients

February 2025

Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan.

: Exposure to fine particulate matter (PM) causes significant respiratory and gastrointestinal health problems. In our prior research, we identified TW01 as a promising strain for mitigating oxidative damage, enhancing wound healing in intestinal epithelial cells, and protecting bronchial cells from cigarette smoke extract. Building upon these findings, this study examines the protective effects of this strain on lung damage induced by particulate matter (PM) through the gut-lung axis in mouse models.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a life-threatening condition triggered by pneumonia, viral infections, or physical trauma. It manifests clinically as progressive respiratory failure and refractory hypoxemia. Using a lipopolysaccharide (LPS)-induced acute lung injury mouse model, we demonstrated that amniotic mesenchymal stem cells (AMSCs) exhibit robust reparative and anti-inflammatory properties.

View Article and Find Full Text PDF

The respiratory epithelium maintains the barrier against inhaled harmful agents. When barrier failure occurs, as in several respiratory diseases, acute or chronic inflammation leading to destructive effects and exacerbations can occur. Macrolides are used to treat a spectrum of infections but are also known for off-label use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!