This study investigates the effects of astaxanthin on oxidative stress, mitochondrial function, and follicular development in mouse preantral follicles, with a focus on the involvement of the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Astaxanthin (2.5 nM) significantly enhanced both the antrum formation (from 85.96% in the control group to 94.38% in the astaxanthin group) and maturation rates (from 79.15% to 85.12%) of oocytes ( < 0.05). From day 4 of in vitro culture, astaxanthin notably increased the area of follicle attachment (from 0.06 µm to 0.32 µm) and the secretion of estradiol (from 32.10 ng/L to 49.73 ng/L) ( < 0.05). Additionally, it significantly decreased malondialdehyde content (from 80.54 μM to 62.65 μM) within the follicles while increasing the mRNA expression levels of glutathione and superoxide dismutase 1 ( < 0.05). Astaxanthin also reduced reactive oxygen species levels in oocytes ( < 0.05). Notably, astaxanthin enhanced the expression of p-AMPK and PGC-1α, which are key proteins for the AMPK pathway; NRF1 and TFAM, which are crucial for mitochondrial biogenesis; NRF2 and HO-1, which protect against oxidative stress; CO1, CO2, CO3, ATP6, ATP8, and TOM20, which are essential for electron transport chain activity and ATP synthesis; PINK1, Parkin, and LC3-II, which are involved in mitophagy; Bcl-2, which inhibits cell apoptosis; and StAR and P450scc, which promote estrogen synthesis ( < 0.05). Furthermore, astaxanthin improved mitochondrial membrane potential and decreased the expression of cleaved caspase 3, Bax, and P53, which promotes cell apoptosis ( < 0.05). However, these changes induced by astaxanthin were completely reversed by AMPK inhibitors, indicating the involvement of the AMPK pathway. Conclusively, astaxanthin enhances the in vitro development of follicles, alleviates oxidative stress in preantral follicles, and promotes mitochondrial function during in vitro culture, which may be mediated by the AMPK pathway.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms26052241DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
preantral follicles
12
ampk pathway
12
astaxanthin
10
alleviates oxidative
8
mouse preantral
8
follicular development
8
ampk signaling
8
signaling pathway
8
mitochondrial function
8

Similar Publications

Neuron-derived clone 77 (Nur77), a member of the orphan nuclear receptor family, is expressed and activated rapidly in response to diverse physiological and pathological stimuli. It exerts complex biological functions, including roles in the nervous system, genome integrity, cell differentiation, homeostasis, oxidative stress, autophagy, aging, and infection. Recent studies suggest that Nur77 agonists alleviate symptoms of neurodegenerative diseases, highlighting its potential as a therapeutic target in such conditions.

View Article and Find Full Text PDF

Spermidine alleviates copper-induced oxidative stress, inflammation and cuproptosis in the liver.

FASEB J

March 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China.

Copper exposure poses potential detrimental effects on both public and ecosystem health. Spermidine, an antioxidant, has shown promise in reducing oxidative stress and inflammation within the liver. However, its specific role in mitigating copper-induced hepatic cuproptosis and disturbances in copper metabolism remains unexplored.

View Article and Find Full Text PDF

Orchestrated changes in cell arrangements and cell-to-cell contacts are susceptible to cellular stressors during central nervous system development. Effects of mitochondrial complex I inhibition on cell-to-cell contacts have been studied in vascular and intestinal structures; however, its effects on developing neuronal cells are largely unknown. We investigated the effects of the classical mitochondrial stressor and complex I inhibitor, rotenone, on the architecture of neural rosettes-radially organized neuronal progenitor cells (NPCs)-differentiated from human-induced pluripotent stem cells.

View Article and Find Full Text PDF

Peripheral nerve injuries (PNIs) often lead to semi or complete loss of motor, sensory and autonomic functions. Although autografts are still the best option for PNI repair, their use is restricted due to the morbidity and availability of donor nerves. Because electrospun scaffolds may replicate the structure of native extracellular matrix (ECM), they provide a viable alternative.

View Article and Find Full Text PDF

Role of Immune Cells in Perivascular Adipose Tissue in Vascular Injury in Hypertension.

Arterioscler Thromb Vasc Biol

March 2025

Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Quebec, Canada (O.B., P.P., E.L.S.).

Hypertension is associated with vascular injury characterized by vascular dysfunction, remodeling, and stiffening, which contributes to end-organ damage leading to cardiovascular events and potentially death. Innate (macrophages and dendritic cells), innate-like (γδ T cells) and adaptive immune cells (T and B cells) play a role in hypertension and vascular injury. Perivascular adipose tissue that is the fourth layer of the blood vessel wall is an important homeostatic regulator of vascular tone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!