Exosomes are nanosized extracellular vesicles secreted by various cells, including natural killer (NK) cells, and are known for their low toxicity, high permeability, biocompatibility, and strong targeting ability. NK cell-derived exosomes (NK-exos) contain cytotoxic proteins that enhance tumor-targeting efficiency, making them suitable for treating solid tumors such as hepatocellular carcinoma (HCC). Despite their potential in drug delivery, the mechanisms of drug-loaded NK-exos, particularly those loaded with doxorubicin (NK-exos-Dox), remain unclear in HCC. This study explored the anti-tumor effects of NK-exos-Dox against Hep3B cells . NK-exos-Dox expressed exosome markers (CD9 and CD63) and cytotoxic proteins (granzyme B and perforin) and measured 170-220 nm in size. Compared to NK-exos, NK-exos-Dox enhanced cytotoxicity and apoptosis in Hep3B cells by upregulating pro-apoptotic proteins (Bax, cytochrome c, cleaved caspase 3, and cleaved PARP) and inhibiting the anti-apoptotic protein (Bcl-2). These findings suggest that NK-exos-Dox significantly boost anti-tumor effects by activating specific cytotoxic molecules, offering promising therapeutic opportunities for solid tumor treatment, including HCC.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms26052234DOI Listing

Publication Analysis

Top Keywords

anti-tumor effects
12
natural killer
8
cell-derived exosomes
8
hepatocellular carcinoma
8
cytotoxicity apoptosis
8
cytotoxic proteins
8
hep3b cells
8
cells
5
nk-exos-dox
5
enhanced anti-tumor
4

Similar Publications

Introduction: CD47 is highly expressed on cancer cells and triggers an anti-phagocytic "don't eat me" signal when bound by the inhibitory signal regulatory protein α (SIRPα) expressed on macrophages. While CD47 blockade can mitigate tumor growth, many CD47 blockers also bind to red blood cells (RBCs), leading to anemia. Maplirpacept (TTI-622, PF-07901801) is a CD47 blocking fusion protein consisting of a human SIRPα fused to an IgG4 Fc region and designed to limit binding to RBCs.

View Article and Find Full Text PDF

Interferon-driven Metabolic Reprogramming and Tumor Microenvironment Remodeling.

Immune Netw

February 2025

Department of Fundamental Oncology, University of Lausanne, 1015 Lausanne, Switzerland.

IFNs play a critical role in cancer biology, including impacting tumor cell behavior and instructing the tumor microenvironment (TME). IFNs recently have been shown to reprogram tumor metabolism through distinct mechanisms. Furthermore, IFNs shape the TME by modulating immune cell infiltration and function, contributing to the intricate interaction between the tumor and stromal cells.

View Article and Find Full Text PDF

Background: and preclinical examinations of cancer cell lines are performed to determine the effectiveness of new drugs before initiating clinical trials. However, there is often a significant disparity between the promising results observed in preclinical evaluations and actual outcomes in clinical trials. Therefore, we hypothesized that this inconsistency might be due to the differences between the characteristics of cell lines and actual cancers in patients.

View Article and Find Full Text PDF

species, a widely distributed genus of red macroalgae, have gathered significant attention for their diverse medical applications attributable to their bioactive sulphated polysaccharides (SPs). This review examines the global narrative of various SP applications in terms of their therapeutic potential and mechanistic insights into the use of these SPs against a range of medical conditions, including cancer, inflammation, neurodegenerative disorders, diabetes, and immune dysfunctions. SPs extracted from and have demonstrated potent anti-tumour activities by inducing apoptosis through various mechanisms, including the upregulation of CD8 T cells and IL-2, inhibition of EGFR/MAPK/ERK signalling pathways, and activation of the Fas/FasL pathway.

View Article and Find Full Text PDF

Lactic acid bacteria (LAB) exopolysaccharides (EPSs) have garnered significant scientific interest due to their multifaceted roles in food technology and health promotion. This comprehensive review systematically examines the structural classification of LAB EPSs, emphasizing distinctions between homo-and heteropolysaccharides, as well as the influence of substituent groups (e. g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!