Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chronic obstructive pulmonary disease (COPD) is a clinical syndrome that presents as airflow limitation with poor reversibility accompanied by dynamic hyperinflation of the lung. It is a complex disease with chronic inflammatory airway changes caused by exposure to noxious particles or gases, such as cigarette smoke. The disease involves persistent inflammation and oxidative stress, perpetuated by frequent exacerbations. The prevalence of COPD is on the rise, with the prediction that it will be the leading cause of morbidity and mortality over the next decade. Despite the global burden of COPD and its associated morbidity and mortality, treatment remains limited. Although the understanding of the pathogenesis of COPD has increased over the last two decades, molecular approaches to develop new therapies for the treatment of COPD have lagged. Here, we review the molecular approaches that have the potential for developing novel therapies for COPD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ijms26052184 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!