Chitosan is a water-soluble polysaccharide with good adherence to negatively charged surfaces and reported antimicrobial and anti-inflammatory properties. Coating the surfaces of medical devices with chitosan is a promising strategy for harnessing these benefits. However, the surface properties of commercial polymers need to be altered to enable the bonding of thin chitosan films. In this study, the adhesion of chitosan onto plasma-treated polyvinyl chloride (PVC) and the metabolic activity of urothelial cells on chitosan-coated medical-grade PVC used for the synthesis of urinary catheters were evaluated. To improve the adhesion of chitosan onto the PVC catheters, PVC samples were made "super-hydrophilic". PVC substrates were briefly treated with a powerful hydrogen plasma and weakly ionised oxygen plasma afterglow to obtain a chlorine-free surface film, which was rich in oxygen functional groups, followed by incubation of the plasma-treated substrates in an aqueous solution of chitosan. Then, urothelial RT4 cells were seeded on the treated and untreated PVC substrates, and their metabolic activity, confluency, and cell morphology were examined. X-ray photoelectron spectroscopy was used to measure the nitrogen concentration, which corresponded to the chitosan concentration on the substrate. The results showed that the substrates were uniformly covered by a thin layer of chitosan only on plasma-treated surfaces and not on untreated surfaces. Moreover, the chitosan coating provided a stimulated environment for cell adhesion and growth. In conclusion, the chitosan-coated super-hydrophilic PVC substrate shows potential to improve the overall performance and safety of medical devices such as urinary catheters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ijms26052128 | DOI Listing |
Nanomedicine (Lond)
March 2025
Department of Chemistry and The Institute for Laser, Photonics, and Biophotonics, University at Buffalo, The State University of New York, Buffalo, NY, USA.
Background: Nanomedicine offers a number of innovative strategies to address major public health burdens, including complex respiratory illnesses. In this work, we introduce a multi-drug nanoparticle fabricated using femtosecond laser ablation for the treatment of influenza, SARS-CoV-2, and their co-infections.
Methods: The SARS-CoV-2 antiviral, remdesivir; the influenza antiviral, baloxavir marboxil; and the anti-inflammatory, dexamethasone, were co-crystalized and then ablated in aqueous media using a femtosecond pulsed laser and subsequently surface modified with the cationic polymer, chitosan, or poly-d-lysine.
Adv Mater
March 2025
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
The distribution of electrical potentials and current in exogenous electrostimulation has significant impacts on its effectiveness in promoting tissue repair. However, there is still a lack of a flexible, implantable power source capable of generating customizable patterned electric fields for in situ electrostimulation(electrical stimulation). Herein, this study reports a fuel cell patch (FCP) that can provide in situ electrostimulation and a hypoxic microenvironment to promote tissue repair synergistically.
View Article and Find Full Text PDFAPL Bioeng
March 2025
Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, People's Republic of China.
Nonunion fractures present a significant clinical challenge because of their complex microenvironment, which includes poor vascularization, insufficient osteogenesis, infection, and separation of fracture ends. The current clinical treatments have certain limitations. Inspired by this phenomenon, sandcastle worms secrete adhesive proteins that bind sand grains, shell fragments, and mineral particles, thereby constructing their "castles.
View Article and Find Full Text PDFFoods
March 2025
Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
The food industry is increasingly turning to healthy and eco-friendly alternatives for meat preservation, with recent attention focused on chitosan (CH) and essential oils (EOs). Here, we propose two liquid formulations of CH enriched with or EOs to preserve beef patties stored for 4 days at 4 °C from colour changes, secondary lipid oxidation, and alteration in volatile organic compound emissions while also preventing oviposition by on beef loaves hung for the same time at around 13 °C in a netted polytunnel. Overall, the EO-enriched CH solution increased the meat colour lightness compared to the control (+7.
View Article and Find Full Text PDFFoods
February 2025
Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City 70000, Vietnam.
Rice ( L.) is a staple food globally, providing a critical food for the majority of the Asian population. However, it exposes risks during post-harvest storage, threatening substantial losses in rice quality and quantity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!