Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cellular phenotypic transformation is a key process that occurs during the development and progression of atherosclerosis. Within the arterial wall, endothelial cells, vascular smooth muscle cells, and macrophages undergo phenotypic changes that contribute to the pathogenesis of atherosclerosis. miRNAs have emerged as potential biomarkers for cellular phenotypic changes during atherosclerosis. Monitoring miR-155-5p, miR-210-3p, and miR-126-3p or 5p levels could provide valuable insights into disease progression, risk of complications, and response to therapeutic interventions. Moreover, miR-92a-3p's elevated levels in atherosclerotic plaques present opportunities for predicting disease progression and related complications. Baseline levels of miR-33a/b hold the potential for predicting responses to cholesterol-lowering therapies, such as statins, and the likelihood of dyslipidemia-related complications. Additionally, the assessment of miR-122-5p levels may offer insights into the efficacy of low-density-lipoprotein-lowering therapies. Understanding the specific miRNA-mediated regulatory mechanisms involved in cellular phenotypic transformations can provide valuable insights into the pathogenesis of atherosclerosis and potentially identify novel therapeutic targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ijms26052083 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!