Metabolic reprogramming is a hallmark of cancer, enabling tumor cells to adapt to and exploit their microenvironment for sustained growth. The liver is a common site of metastasis, but the interactions between tumor cells and hepatocytes remain poorly understood. In the context of liver metastasis, these interactions play a crucial role in promoting tumor survival and progression. This study leverages multiomics coverage of the microenvironment via liquid chromatography and high-resolution, high-mass-accuracy mass spectrometry-based untargeted metabolomics, C-stable isotope tracing, and RNA sequencing to uncover the metabolic impact of co-localized primary hepatocytes and a colon adenocarcinoma cell line, SW480, using a 2D co-culture model. Metabolic profiling revealed disrupted Warburg metabolism with an 80% decrease in glucose consumption and 94% decrease in lactate production by hepatocyte-SW480 co-cultures relative to SW480 control cultures. Decreased glucose consumption was coupled with alterations in glutamine and ketone body metabolism, suggesting a possible fuel switch upon co-culturing. Further, integrated multiomics analysis indicates that disruptions in metabolic pathways, including nucleoside biosynthesis, amino acids, and TCA cycle, correlate with altered SW480 transcriptional profiles and highlight the importance of redox homeostasis in tumor adaptation. Finally, these findings were replicated in three-dimensional microtissue organoids. Taken together, these studies support a bioinformatic approach to study metabolic crosstalk and discovery of potential therapeutic targets in preclinical models of the tumor microenvironment.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms26051976DOI Listing

Publication Analysis

Top Keywords

metabolic crosstalk
8
tumor cells
8
metastasis interactions
8
glucose consumption
8
metabolic
6
tumor
5
deciphering colorectal
4
colorectal cancer-hepatocyte
4
cancer-hepatocyte interactions
4
interactions multiomics
4

Similar Publications

Cross-protectivity of henipavirus soluble glycoprotein in an model of Nipah virus disease.

Front Immunol

March 2025

Specialised Microbiology and Laboratories, United Kingdom Health Security Agency (UKHSA), Salisbury, Wiltshire, United Kingdom.

Introduction: Nipah virus (NiV) is one of a group of highly pathogenic viruses classified within the Henipavirus genus. Since 2012 at least 11 new henipa-like viruses have been identified, including from new locations and reservoir hosts; the pathogenicity of these new viruses has yet to be determined, but two of them have been associated with morbidity, including fatalities.

Methods: The efficacy and cross-reactivity of two vaccine candidates derived from the soluble glycoproteins of both NiV and Hendra virus (HeV) was evaluated in our recently established hamster model.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) represent a family of membrane proteins that regulate several cellular processes. Among the GPCRs, G protein-coupled receptor kinases (GRKs) regulate downstream signaling pathways and receptor desensitization. GRK2 has gained significant interest due to its cardiovascular physiology and pathological involvement.

View Article and Find Full Text PDF

Progress in Plant Nitric Oxide Studies: Implications for Phytopathology and Plant Protection.

Int J Mol Sci

February 2025

Department of Biochemisty, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc-Holice, Czech Republic.

Nitric oxide (NO) is a gaseous free radical known to modulate plant metabolism through crosstalk with phytohormones (especially ABA, SA, JA, and ethylene) and other signaling molecules (ROS, HS, melatonin), and to regulate gene expression (by influencing DNA methylation and histone acetylation) as well as protein function through post-translational modifications (cysteine S-nitrosation, metal nitrosation, tyrosine nitration, nitroalkylation). Recently, NO has gained attention as a molecule promoting crop resistance to stress conditions. Herein, we review innovations from the NO field and nanotechnology on an up-to-date phytopathological background.

View Article and Find Full Text PDF

Metabolic reprogramming is a hallmark of cancer, enabling tumor cells to adapt to and exploit their microenvironment for sustained growth. The liver is a common site of metastasis, but the interactions between tumor cells and hepatocytes remain poorly understood. In the context of liver metastasis, these interactions play a crucial role in promoting tumor survival and progression.

View Article and Find Full Text PDF

Reductive stress (RS), characterized by excessive accumulation of reducing equivalents such as NADH and NADPH, is emerging as a key factor in metabolic disorders and cancer. While oxidative stress (OS) has been widely studied, RS and its complex interplay with endocrine regulation remain less understood. This review explores molecular circuits of bidirectional crosstalk between metabolic hormones and RS, focusing on their role in diabetes, obesity, cardiovascular diseases, and cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!