Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Breast cancer (BC) is a highly heterogeneous disease with diverse molecular subtypes, which complicates prognosis and treatment. In this study, we performed a multi-omics clustering analysis using the Cancer Integration via MultIkernel LeaRning (CIMLR) method on a large BC dataset from The Cancer Genome Atlas (TCGA) to identify key prognostic biomarkers. We identified three genes-, , and -that were significantly associated with poor prognosis in both the TCGA dataset and an additional dataset comprising 146 metastatic BC patients. Patients' stratification based on the expression of these three genes revealed distinct subtypes with markedly different overall survival (OS) outcomes. Further validation using almost 2000 BC patients' data from the METABRIC dataset and RNA sequencing data from therapy-resistant cell lines confirmed the upregulation of and , respectively, in patients with worse prognosis and in resistant cells, also suggesting their potential role in drug resistance. Our findings highlight and as potential biomarkers for identifying high-risk BC patients and informing targeted treatment strategies. This study provides valuable insights into the multi-omics landscape of BC and underscores the importance of personalized therapeutic approaches based on molecular profiles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ijms26051943 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!