Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
/(tarragon) is a perennial plant used in traditional medicine and the food industry. The plant is known to have beneficial effects on health, such as antibacterial, antifungal, antiseptic, carminative, anti-inflammatory, antipyretic, anthelmintic, etc. In this study, the compounds present in the highest concentrations in the essential oils obtained by different extraction methods from tarragon found on the Romanian market were identified by gas chromatography-mass spectrometry. The biological activity of these compounds was predicted using the computational tools ADMETlab3.0, admetSAR3.0, CLC-Pred2.0, and AntiBac-Pred. Also, the main molecular target of these compounds was predicted and the interactions with this protein were evaluated using molecular docking. The compounds identified in high concentrations in the obtained essential oils are estragole, cis-β-ocimene, trans-β-ocimene, limonene, eugenol methyl ether, eugenol acetate, eugenol, caryophyllene oxide, and α-pinene. The absorption, distribution, metabolism, excretion, and toxicity profiles of these compounds show that they are generally safe, but some of them can cause skin sensitization and respiratory toxicity and are potential inhibitors of the organic anion transporters OATP1 and OATP2. Several of these compounds exert antibacterial activity against some species of , , and . All compounds reveal potential cytotoxicity for several types of cancer cells. These findings may guide further experimental studies to identify medical and pharmacological applications of tarragon extracts or specific compounds that can be isolated from these extracts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ijms26051860 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!