Proteins involved in synaptic transmission in normal hearing, acoustic stimulation, and tinnitus were identified using protein-protein interaction (PPI) networks. The gene list for tinnitus was compiled from the GeneCards database using the keywords "synaptic transmission" AND "inferior colliculus" AND "tinnitus" (Tin). For comparison, two gene lists were built using the keywords "auditory perception" (AP) and "acoustic stimulation" (AS). The STRING and the Cytoscape data analyzer were used to identify the top two high-degree proteins (HDPs) and the corresponding high-score interaction proteins (HSIP). The top1 key proteins of the AP and AS processes are BDNF and the receptor NTRK2; the top2 key proteins in the AP process are PVALB, together with GAD1, CALB1, and CALB2, which are important for the balance of excitation and inhibition. In the AS process, the top2 key proteins are FOS, CREB1, EGR1, and MAPK1, reflecting an activated state. The top1 key proteins of the Tin process are BDNF, NTRK3, and NTF3; these proteins are associated with the proliferation and differentiation of neurons and indicate the remodeling of synaptic transmission in IC. The top2 key proteins are GFAP and S100B, indicating a role for astrocytes in the modulation of synaptic transmission.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms26051831DOI Listing

Publication Analysis

Top Keywords

key proteins
24
synaptic transmission
16
top2 key
12
proteins
10
top1 key
8
key
5
candidate key
4
proteins tinnitus-a
4
tinnitus-a bioinformatic
4
bioinformatic study
4

Similar Publications

Neuron-derived clone 77 (Nur77), a member of the orphan nuclear receptor family, is expressed and activated rapidly in response to diverse physiological and pathological stimuli. It exerts complex biological functions, including roles in the nervous system, genome integrity, cell differentiation, homeostasis, oxidative stress, autophagy, aging, and infection. Recent studies suggest that Nur77 agonists alleviate symptoms of neurodegenerative diseases, highlighting its potential as a therapeutic target in such conditions.

View Article and Find Full Text PDF

Glaucoma, a leading cause of irreversible blindness, is characterized by the progressive loss of retinal ganglion cells (RGCs) and optic nerve damage, often associated with elevated intraocular pressure (IOP). Retinoid X receptors (RXRs) are ligand-activated transcription factors crucial for neuroprotection, as they regulate gene expression to promote neuronal survival via several biochemical networks and reduce neuroinflammation. This study investigated the therapeutic potential of 9-cis-13,14-dihydroretinoic acid (9CDHRA), an endogenous retinoid RXR agonist, in mitigating RGC degeneration in a high-IOP-induced experimental model of glaucoma.

View Article and Find Full Text PDF

Aims: Osteoarthritis (OA) is a widespread chronic degenerative joint disease with an increasing global impact. The pathogenesis of OA involves complex interactions between genetic and environmental factors. Despite this, the specific genetic mechanisms underlying OA remain only partially understood, hindering the development of targeted therapeutic strategies.

View Article and Find Full Text PDF

Spermidine alleviates copper-induced oxidative stress, inflammation and cuproptosis in the liver.

FASEB J

March 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China.

Copper exposure poses potential detrimental effects on both public and ecosystem health. Spermidine, an antioxidant, has shown promise in reducing oxidative stress and inflammation within the liver. However, its specific role in mitigating copper-induced hepatic cuproptosis and disturbances in copper metabolism remains unexplored.

View Article and Find Full Text PDF

Mathematical analysis of long-distance polar auxin transport data of pin mutants questions the role of PIN1 as postulated in the chemi-osmotic theory.

Physiol Plant

March 2025

Plant Biodynamics Laboratory and Department of Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.

The plant hormone auxin (Indole-3-Acetic Acid, IAA) is a key player in nearly every aspect of plant growth and development ranging from cell division and cell elongation to embryogenesis and root formation. The IAA level in specific tissues and cells is regulated by synthesis, conjugation, degradation and transport. Especially long-range polar auxin transport (PAT) has been the subject of numerous studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!