The comprehensive analysis of NBS-LRR resistance genes in the pepper ( L.) genome reveals their structural diversity, evolutionary history, and functional importance in plant immunity. A total of 252 NBS-LRR genes were identified, distributed unevenly across all chromosomes, with 54% forming 47 gene clusters. These clusters, driven by tandem duplications and genomic rearrangements, underscore the dynamic evolution of resistance genes. Phylogenetic analysis demonstrated the dominance of the nTNL subfamily over the TNL subfamily, reflecting lineage-specific adaptations and evolutionary pressures. Structural analyses identified six conserved motifs (P-loop, RNBS-A, kinase-2, RNBS-B, RNBS-C, and GLPL) essential for ATP/GTP binding and resistance signaling. Subfamily-specific differences in motif composition and sequence similarity highlight their functional divergence and specialization. Comparative analyses across species further revealed a greater prevalence of nTNL genes in angiosperms, with significant losses of TNL genes in monocots. This study enhances our understanding of the evolution and diversification of plant-resistance genes and provides a foundation for developing disease-resistant crops through targeted breeding strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ijms26051828 | DOI Listing |
Small
March 2025
College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
Lattice sulfur-impregnated nanoscale zerovalent iron (S-nFe) has been recognized as a promising groundwater remediation agent. However, little information is available on its reactivity with ubiquitous extracellular antibiotic resistance genes (eARGs) in anaerobic groundwater, and how S content and speciation affect their interactions. Here, the efficient anaerobic degradation of eARGs by S-nFe (6 log within 5 min), resulting in completely inhibited transformation is showed.
View Article and Find Full Text PDFHaematologica
March 2025
Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra.
Continuous treatment with ibrutinib not only exerts tumor control but also enhances T cell function in patients with chronic lymphocytic leukemia (CLL). We conducted longitudinal multi-omics analyses in samples from CLL patients receiving ibrutinib upfront to identify potential adaptive mechanisms to Bruton tyrosine kinase (BTK) inhibition during the first 12 months of continuous therapy. We found that ibrutinib induced a decrease in the expression of exhaustion markers and the proportion of Tregs and Tfh cells normalized to levels observed in healthy donors.
View Article and Find Full Text PDFBiosaf Health
April 2024
College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
Antibiotic resistance is an escalating global concern, leading to millions of annual fatalities. Antibiotic resistance genes (ARGs) present in bacteria equip them to withstand the effects of antibiotics. Intra- and interspecific ARGs transmission through horizontal gene transfer further exacerbates resistance dissemination.
View Article and Find Full Text PDFBiosaf Health
April 2024
CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China.
Chicken is an important food animal worldwide and plays an important role in human life by providing meat and eggs. Despite recent significant advances in gut microbiome studies, a comprehensive study of chicken gut bacterial, archaeal, and viral genomes remains unavailable. In this study, we constructed a chicken multi-kingdom microbiome catalog (CMKMC), including 18,201 bacterial, 225 archaeal, and 33,411 viral genomes, and annotated over 6,076,006 protein-coding genes by integrating 135 chicken gut metagenomes and publicly available metagenome-assembled genomes (MAGs) from ten countries.
View Article and Find Full Text PDFHortic Res
April 2025
Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201, Jiufeng 1st Road, Donghu New Technology Development Zone, Wuhan 430074, China.
Although the significance of some plant WRKYs in response to cold stress have been identified, the molecular mechanisms of most WRKYs remain unclear in grapevine. In this study, we demonstrate that cold-induced expression of in executes a beneficial role in enhancing resistance by the regulating starch decomposition. VaWRKY65 was identified as an upstream transcriptional activator of through yeast one-hybrid library screening and validated to directly interact with the W-box region inside the promoter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!