Cheminformatics bridges chemistry, computer science, and information technology to predict chemical behaviors using quantitative structure-property relationships (QSPRs). This study advances QSPR modeling by introducing novel connection-based graphical invariants, specifically designed to enhance the predictive accuracy for physicochemical properties (PCPs) of benzenoid hydrocarbons (BHs). Employing cutting-edge computational methods, we evaluate these invariants against established descriptors in modeling the normal boiling point and standard heat of formation. The findings reveal superior predictive performance by newly proposed invariants, such as the sum-connectivity connection index, outperforming traditional indices like the Zagreb connection indices. Furthermore, we extend these methods to model the physicochemical properties of coumarin-related anti-cancer drugs, demonstrating their potential in drug development. The statistical analysis suggests that the most appropriate structure-property models are nonlinear. This work not only proposes robust tools for PCP estimation but also advocates for rigorous testing of descriptors to ensure relevance in cheminformatics.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms26051827DOI Listing

Publication Analysis

Top Keywords

physicochemical properties
8
computational approach
4
approach predictive
4
predictive modeling
4
modeling connection-based
4
connection-based topological
4
topological descriptors
4
descriptors applications
4
applications coumarin
4
coumarin anti-cancer
4

Similar Publications

Associations between Ultrafine Particles and Incident Dementia in Older Adults.

Environ Sci Technol

March 2025

Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States.

Fine particulate matter (PM) is linked to dementia risk, but ultrafine particles (UFPs, <100 nm) may be even more toxic due to their distinct physicochemical properties. However, evidence on UFPs and dementia remains limited. This study assessed the association between UFP exposure and Alzheimer's disease (AD) and related dementias (ADRD) among U.

View Article and Find Full Text PDF

MXenes and MXene-based composites for biomedical applications.

J Mater Chem B

March 2025

Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China.

MXenes, a novel class of two-dimensional materials, have recently emerged as promising candidates for biomedical applications due to their specific structural features and exceptional physicochemical and biological properties. These materials, characterized by unique structural features and superior conductivity, have applications in tissue engineering, cancer detection and therapy, sensing, imaging, drug delivery, wound treatment, antimicrobial therapy, and medical implantation. Additionally, MXene-based composites, incorporating polymers, metals, carbon nanomaterials, and metal oxides, offer enhanced electroactive and mechanical properties, making them highly suitable for engineering electroactive organs such as the heart, skeletal muscle, and nerves.

View Article and Find Full Text PDF

Background: Although the SARS-CoV-2 and dengue viruses seriously endanger human health, there is presently no vaccine that can stop a person from contracting both viruses at the same time. In this study, four antigens from SARS-CoV-2 and dengue virus were tested for immunogenicity, antigenicity, allergenicity, and toxicity and chosen to predict dominant T- and B-cell epitopes.

Methods: For designing a multi-epitope vaccine, the sequences were retrieved, and using bioinformatics and immunoinformatics, the physicochemical and immunological properties, as well as secondary structures, of the vaccine were predicted and studied.

View Article and Find Full Text PDF

Background: The specific and non-specific toxicities of cryoprotective agents (CPAs) for semen or spermatozoa cryopreservation/vitrification (SC/SV) remain challenges to the success of assisted reproductive technologies.

Objective: We searched for and integrated the physicochemical and toxicological characteristics of small-molecule CPAs as well as curated the information of all extenders reported for carnivores to provide a foundation for new research avenues and computational cryobiology.

Methods: The PubMed database was systematically searched for CPAs reported in SC/SV of carnivores from 1964 to 2024.

View Article and Find Full Text PDF

Currently, replacing expensive and short-lived materials for supercapacitors based on RuO with more cost-effective and high-performance materials that remain operational after a large number of cycles is a challenge. Cerium-based materials are the most attractive alternative because of cerium's ability to quickly change oxidation state. This work proposes the synthesis of nanostructured graphene-ceria composite and studies its morphological features arising under the impact of oxygen-free graphene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!