This study was designed to develop cationic vesicles for doxorubicin (DOX) delivery and to compare anticancer efficacy of these systems uncoated and coated with hyaluronic acid. Cationic nanoformulation was first optimized using various amounts of Span80, DODAB, and cholesterol. The optimized niosomal formulation (CTN4) in terms of vesicle size, surface zeta potential, and colloidal stability was coated with hyaluronic acid and the in vitro therapeutic effectiveness in uterine cervix cancer cells of vesicles loaded with DOX was tested. In vitro studies revealed significantly superior cytotoxicity against Hela cells of niosomes coated with HA compared to uncoated formulations. Moreover, cytotoxicity was also evaluated on normal fibroblast murine cell line, NIH-3T3 cells, and the results obtained demonstrated that HA-coated vesicles exhibited lower cytotoxicity to NIH-3T3 cells compared to uncoated nanovesicles. These findings highlighted how the surface coating influences the effectiveness of niosomes developed as a target drug delivery system and the selectivity and the antitumour efficacy of chemotherapeutic drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/molecules30051148 | DOI Listing |
Front Bioeng Biotechnol
February 2025
International Joint Laboratory of Biomaterials and Tissue Regeneration, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China.
Introduction: Human endometrial mesenchymal stem cells (H-EMSCs) can inhibit endometrial fibrosis and repair damaged endometrium. However, direct cell injection into dam-aged endometrium shows limited cell survival. Cell seeding onto biomaterial-based electrospun membranes could improve H-EMSCs' survival and prolong their stay at the damaged endometrium.
View Article and Find Full Text PDFJ Tissue Eng
March 2025
Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, Munich, Germany.
Chronic wounds represent an unresolved medical challenge with significant impact for patients' quality of life and global healthcare. Diverse in origin, ischemic-hypoxic and inflammatory conditions play central roles as pathological features that impede proper tissue regeneration. In this study, we propose an innovative approach to address this challenge.
View Article and Find Full Text PDFMaterials (Basel)
March 2025
Nano-Biotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
Nanoarchitectonics influences the properties of objects at micro- and even macro-scales, aiming to develop better structures for protection of product. Although its applications were analyzed in different areas, nanoarchitectonics of food packaging-the focus of this review-has not been discussed, to the best of our knowledge. The (A) structural and (B) functional hierarchy of food packaging is discussed here for the enhancement of protection, extending shelf-life, and preserving the nutritional quality of diverse products including meat, fish, dairy, fruits, vegetables, gelled items, and beverages.
View Article and Find Full Text PDFMolecules
March 2025
Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
This study was designed to develop cationic vesicles for doxorubicin (DOX) delivery and to compare anticancer efficacy of these systems uncoated and coated with hyaluronic acid. Cationic nanoformulation was first optimized using various amounts of Span80, DODAB, and cholesterol. The optimized niosomal formulation (CTN4) in terms of vesicle size, surface zeta potential, and colloidal stability was coated with hyaluronic acid and the in vitro therapeutic effectiveness in uterine cervix cancer cells of vesicles loaded with DOX was tested.
View Article and Find Full Text PDFMolecules
February 2025
Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea.
The growing demand for aesthetic enhancement has driven the development of anti-aging cosmetics, with natural compound-based formulations emerging as a new trend to enhance efficacy. This study aims to develop a 30% ethanol extract of a 1:1 mixture of and (LF) as a potential material for combating UVB-induced skin aging. The bioactive components of LF extract were identified via HPLC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!