Beta-blockers are pharmaceuticals used to treat cardiovascular diseases such as hypertension, angina pectoris, and arrhythmia. Due to high consumption, they are continuously released into the environment, being detected in many aqueous matrices. The aim of this research is to test the effectiveness of two green liquid-phase microextraction procedures, such as dispersive liquid-liquid microextraction (DLLME) and solidification of floating organic droplet microextraction (SFOME) for the selective extraction of eight beta-blockers (atenolol, nadolol, pindolol, acebutolol, metoprolol, bisoprolol, propranolol, and betaxolol) from aqueous matrices for their analysis by gas chromatography (GC) or liquid chromatography (LC). The influence of extraction parameters, such as the type and volume of extraction and disperser solvents, and ionic strength were studied. The developed extraction procedures provide a good enrichment factor for six compounds (61.22-243.97), good extraction recovery (53.04-92.1%), and good sample cleaning for both extraction procedures. Good limits of detection (0.13 to 0.69 µg/mL for GC and 0.07 to 0.15 µg/mL for HPLC) and limits of quantification (0.39 to 2.10 µg/mL for GC and 0.20 to 0.45 µg/mL for LC) were obtained. The developed procedures were successfully applied to the analysis of selected beta-blockers in wastewater samples, proving their applicability to the real samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/molecules30051016 | DOI Listing |
Molecules
February 2025
"Raluca Ripan" Institute for Research in Chemistry, Babeş-Bolyai University, 30 Fântânele Str., RO-400294 Cluj-Napoca, Romania.
Beta-blockers are pharmaceuticals used to treat cardiovascular diseases such as hypertension, angina pectoris, and arrhythmia. Due to high consumption, they are continuously released into the environment, being detected in many aqueous matrices. The aim of this research is to test the effectiveness of two green liquid-phase microextraction procedures, such as dispersive liquid-liquid microextraction (DLLME) and solidification of floating organic droplet microextraction (SFOME) for the selective extraction of eight beta-blockers (atenolol, nadolol, pindolol, acebutolol, metoprolol, bisoprolol, propranolol, and betaxolol) from aqueous matrices for their analysis by gas chromatography (GC) or liquid chromatography (LC).
View Article and Find Full Text PDFAnal Bioanal Chem
March 2025
Grupo de Investigación en Metrología Química y Bioanálisis, Instituto Nacional de Metrología de Colombia, Av Carrera 50 No 26 - 55 Int. 2, Bogotá, D.C, Colombia.
In-house reference materials (ihRM) are an alternative to the limited supply of reference materials for method validation and assurance of the validity of pesticide residue results. Currently, limited information exists on producing ihRM of pesticide residues in food for laboratory testing purposes for the desired matrix/analyte/concentration combination. This study aimed to develop in-house reference materials for three food matrices: banana, rice, and green coffee spiked with a total of 22 pesticides, which were selected for their relevance in food matrices, with pK values ranging from -0.
View Article and Find Full Text PDFWater Res
March 2025
State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China; University of Chinese Academy of Sciences, Beijing, China.
Submicron colloids ubiquitously present in aquatic environments and can facilitate long transport of absorbed contaminants. Impact of particle size distribution on mercury (Hg) mobility and transformation in the complex aqueous matrices is still unclear. In this study, we considered Hg mine wastes as a natural Hg releasing source to local rivers, and collected water samples from the source to the downstream during high and low flow periods.
View Article and Find Full Text PDFACS Appl Polym Mater
February 2025
Department of Chemical Engineering and Analytical Science, School of Engineering, University of Manchester, Manchester M13 9QS, U.K.
An innovative polymer-based dual detection microfluidic platform has been developed for the accurate and reliable sensing of trace amounts of antibiotic tetracycline in environmental and food samples. This was achieved through the production of a bespoke polymeric material formed via an imprinting technique using a fluorescent dye. Thus, this enables dual detection of tetracycline, both thermally, via analyzing the heat-transfer resistance at the solid-liquid interface, and optically, through the inner filter effect.
View Article and Find Full Text PDFEnviron Sci Technol
March 2025
Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
Ultraviolet light-induced homolysis of hydrogen peroxide (UV/HO) can generate powerful hydroxyl radicals (OH) for sustainable water purification. However, the efficiency of the conventional bulk-phase UV/HO system is limited by the low yield and utilization of OH, in turn necessitating high UV energy input and long purification period. In this study, we present an innovative UV/HO microdroplet system for enhanced pollutant degradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!