Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This research addresses the critical challenge of CO capture by exploring innovative ways to avoid ethane (CH) co-absorption in natural gas sweetening operations. The solubility of Ethane (CH) was measured in three ionic liquids (ILs) with similar anions, 1-decyl-3-methyl imidazolium bis (trifluoro methylsulfonyl imide) [IL-1], 1-hexadecyl-3-methylimidazolium bis (trifluoro methylsulfonyl imide) [IL-2], and triethytetra-decyl ammonium bis (trifluoromethylsulfonyl imide) [IL-3]. The solubility experiments were investigated at 303.15 K and 343.15 K with pressures reaching 1.2 MPa. Among the ILs, [IL-2] exhibited the highest ethane absorption capacity due to its extended alkyl chain. The Peng-Robinson equation of state (PR-EoS) and three (3) distinct mixing rules provided robust correlations for the solubility data. Results demonstrate the inferior performance of [IL-1], [IL-2], and [IL-3] compared to Selexol/Genosorb 1753. The selectivity of Ethane (CH) over CO was determined, with the overall selectivity ranking as follows: [IL-1] > [IL-3] > [IL-2]. A comparison of these selectivity values with published IL data indicated that these three ILs are most effective when used in applications targeting CO capture in the absence of Ethane (CH), such as in the case of flue gas. They will most probably be used with an amine blend. Additionally, the Enthalpy and entropy of absorption provided valuable insights, demonstrating Ethane's weaker interactions and lower solubility than CO. These findings emphasize the critical role of IL structure in determining ethane solubility and highlight the potential of customized ILs for optimizing gas-separation processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/molecules30050984 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!