A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inducing Osteogenesis in Human Pulp Stem Cells Cultured on Nano-Hydroxyapatite and Naringin-Coated 3D-Printed Poly Lactic Acid Scaffolds. | LitMetric

Inducing Osteogenesis in Human Pulp Stem Cells Cultured on Nano-Hydroxyapatite and Naringin-Coated 3D-Printed Poly Lactic Acid Scaffolds.

Polymers (Basel)

Restorative and Aesthetic Dentistry Department, College of Dentistry, University of Baghdad, Baghdad 1417, Iraq.

Published: February 2025

Background: Regeneration dentistry demonstrates significant challenges due to the complexity of different dental structures. This study aimed to investigate osteogenic differentiation of human pulp stem cells (hDPSCs) cultured on a 3D-printed poly lactic acid (PLA) scaffold coated with nano-hydroxyapatite (nHA) and naringin (NAR) as a model for a dental regenerative.

Methods: PLA scaffolds were 3D printed into circular discs (10 × 1 mm) and coated with nHA, NAR, or both. Scaffolds were cultured with hDPTCs to identify cellular morphological changes and adhesion over incubation periods of 3, 7, and 21 days using SEM. Then, the osteogenic potential of PLA, PLA/nHA/NAR, or PLA scaffolds coated with MTA elutes (PLA/MTA scaffolds) were evaluated by measuring mineralized tissue deposition using calcium concentration assays and alizarin red staining (ARS). Also, immunofluorescence labelling of alkaline phosphatase (ALP) and dentine sialophosphoprotein (DSPP) within cultured cells were evaluated.

Results: The highest cellular attachment was identified on the PLA/nHA/NAR scaffold, with morphological changes reflecting cellular differentiation. The highest calcium deposition and ARS were recognized in the PLA/nHA/NAR culture, with statistically significant difference ( < 0.05) compared to PLA/MTA. Also, ALP and DSPP markers showed statistically significantly higher ( < 0.05) immunoreactivity in cells cultured within PLA/nHA/NAR compared to PLA/MTA.

Conclusions: The results confirm the osteogenic potential of PLA scaffolds coated with nHA/NAR for future animal and human investigations.

Download full-text PDF

Source
http://dx.doi.org/10.3390/polym17050596DOI Listing

Publication Analysis

Top Keywords

pla scaffolds
12
human pulp
8
pulp stem
8
stem cells
8
cells cultured
8
3d-printed poly
8
poly lactic
8
lactic acid
8
morphological changes
8
osteogenic potential
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!