Hemostatic particles have specific advantages when applied to narrow and complicated bleeding sites with convenient usage compared to other types of hemostatic agents such as fabrics, foams, and pastes. However, powdery hemostatic agents are easy to desorb from the bleeding surface due to blood flow, which causes a serious decrease in hemostasis function. Here, we introduce bioresorbable flake particulates composed of calcium alginate, starch and polyacrylamide/poly(acrylic acid) ionic networks as a wound adhesive hemostatic agent. The microstructure, chemical characteristics and blood infiltration of the flake hemostatic agent were analyzed. In vitro blood absorption, coagulation ability, adhesion force, cytotoxicity and in vivo bioresorption with biological safety were investigated. The tissue adhesive force of the hemostatic flakes showed a consistently higher value (-0.67 ± 0.06 N axial force) than Arista AH powder. The in vivo rat hepatic hemorrhage model analysis demonstrated a significantly improved hemostasis rate in the flake group (36 ± 5 s) by wound adhesion and quick blood absorption. This adhesive flake particulate hemostatic is expected to provide an advanced option for medical treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/polym17050568 | DOI Listing |
RSC Adv
March 2025
School of Forensic Medicine, Guizhou Medical University Guiyang 550004 China
Traditional dressings often lack adequate skin structure support, which can lead to secondary damage, poor hemostasis, and an increased risk of inflammation due to wound adhesion. In this work, cellulose hydrogels were prepared by physical/chemical double cross-linking a 'sol-gel' strategy and further loaded with Fe to obtain a three-dimensional (3D) porous cellulose/Fe composite hydrogel (cellulose/Fe gel). The obtained cellulose/Fe gel featured a 3D porous nanofiber structure, excellent water absorption/moisture retention performance, and good mechanical stability.
View Article and Find Full Text PDFNutrients
February 2025
Department of Orthopaedics and Traumatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland.
Obesity is a risk factor for thrombosis-related diseases and a condition that leads to vitamin D deficiency. Furthermore, orthopedic conditions are also at risk for diseases associated with coagulation and endothelial function. This study aimed to assess whether vitamin D supplementation in patients with acute (AOCs) and chronic orthopedic conditions (COCs) and coexisting obesity could affect coagulation and endothelial function.
View Article and Find Full Text PDFInt J Mol Sci
February 2025
Jozef Stefan Institute, Department of Surface Engineering, Jamova cesta 39, 1000 Ljubljana, Slovenia.
Chitosan is a water-soluble polysaccharide with good adherence to negatively charged surfaces and reported antimicrobial and anti-inflammatory properties. Coating the surfaces of medical devices with chitosan is a promising strategy for harnessing these benefits. However, the surface properties of commercial polymers need to be altered to enable the bonding of thin chitosan films.
View Article and Find Full Text PDFPolymers (Basel)
February 2025
Department of Polymer Science and Engineering, Kumoh National Institute of Technology, Gumi 39177, Gyeongbuk, Republic of Korea.
Hemostatic particles have specific advantages when applied to narrow and complicated bleeding sites with convenient usage compared to other types of hemostatic agents such as fabrics, foams, and pastes. However, powdery hemostatic agents are easy to desorb from the bleeding surface due to blood flow, which causes a serious decrease in hemostasis function. Here, we introduce bioresorbable flake particulates composed of calcium alginate, starch and polyacrylamide/poly(acrylic acid) ionic networks as a wound adhesive hemostatic agent.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China.
Acute hemorrhage death on battlefields, during clinical surgeries, and in major accidents is a widespread worldwide problem. Clay-based hemostatic materials have received considerable attention for their low cost and reliable clotting activity, especially in cases of severe bleeding, such as QuikClot, which is a kaolin-based hemostatic gauze that is preferred for battlefield resuscitation. However, the easy detachment of clay particles and the associated risk of thrombosis have seriously hindered the development of clay-based hemostatic materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!