Malignant glioma is a highly aggressive, therapeutically non-responsive, and deadly disease with a unique tumor microenvironment (TME). Of the 14 currently recognized and described cancer hallmarks, five are especially implicated in malignant glioma and targetable with repurposed drugs: cancer stem-like cells, in general, and glioma stem-like cells in particular (GSCs), vascularization and hypoxia, metabolic reprogramming, tumor-promoting inflammation and sustained proliferative signaling. Each hallmark drives malignant glioma development, both individually and through interactions with other hallmarks, in which the TME plays a critical role. To combat the aggressive malignant glioma spatio-temporal heterogeneity driven by TME interactions, and to overcome its therapeutic challenges, a combined treatment strategy including anticancer therapies, repurposed drugs and multimodal immunotherapy should be the aim for future treatment approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/cancers17050879 | DOI Listing |
Adv Mater
March 2025
Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
Micro/Nanorobots(MNRs)integrated with phototherapy represent an emerging approach to cancer treatment and hold significant potential for addressing bacterial infections, neurological disorders, cardiovascular diseases, and related conditions. By leveraging micro/nanoscale motor systems in conjunction with phototherapy, these robots enable real-time guidance and monitoring of therapeutic processes, improving drug delivery precision and efficiency. This integration not only enhances the effectiveness of phototherapy but also minimizes damage to surrounding healthy tissues.
View Article and Find Full Text PDFGrowth Factors
March 2025
Department of Surgery, The University of Melbourne, Parkville, Australia.
Activated Akt and loss of phosphatase and tensin homolog (PTEN) tumour suppression aid chemo- and radio-resistance in glioblastoma stem cells (GSC), contributing to treatment failure in glioblastoma. In this study, sixteen GSC lines were generated from 66 individual glioma samples, in gliomasphere culture conditions. Thirteen of 16 GSC lines expressed hyperphosphorylated Akt (Ser473); Akt phosphorylation did not correlated with EGFR expression.
View Article and Find Full Text PDFInt J Mol Sci
February 2025
MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Agriculture and Biotechnology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
InfoScan is a novel bioinformatics tool designed for the comprehensive analysis of full-length single-cell RNA sequencing (scRNA-seq) data. It enables the identification of unannotated transcripts and rare cell populations, providing a powerful platform for transcriptome characterization. In this study, InfoScan was applied to glioblastoma multiforme (GBM), identifying a rare "neoplastic-stemness" subpopulation exhibiting cancer stem cell-like features.
View Article and Find Full Text PDFInt J Mol Sci
February 2025
Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands.
Due to the minimal survival benefits of existing therapies for pediatric diffuse midline glioma (DMG) patients, new therapeutic modalities are being investigated. Immunotherapies such as CAR-T cells and oncolytic viruses (OVs) are part of these efforts, as evidenced by the increasing number of clinical trials. αβ T cells engineered with a high-affinity γ9δ2 T-cell receptor (TEGs) are immune cells designed to target metabolic changes in malignant or virally infected cells via BTN2A1 and BTN3A.
View Article and Find Full Text PDFInt J Mol Sci
February 2025
Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea.
Gliomas, particularly glioblastoma (GBM), are among the most challenging brain tumors due to their complex and dynamic tumor microenvironment (TME). The TME plays a pivotal role in tumor progression, immune evasion, and resistance to therapy through intricate interactions among glioma cells, immune components, neurons, astrocytes, the extracellular matrix, and the blood-brain barrier. Targeting the TME has demonstrated potential, with immunotherapies such as checkpoint inhibitors and neoadjuvant therapies enhancing immune responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!