Bacteriophages (phages) are viruses that infect and lyse bacteria and have the potential for controlling bacterial diseases. Isolation of phages targeting the cherry pathogen Pseudomonas syringae pv. syringae (Pss) led to five distinct phage genotypes. Building on previous in vitro coevolution experiments, the coevolution of the five phages (individually and as a cocktail) with Pss on cherry leaves was conducted in glasshouse and field experiments. Phages effectively reduced Pss numbers on detached leaves, with no evidence of phage resistance emerging in the bacterial population. Field application of phages in a cherry orchard in Southeast England evaluated phage survival, viability and impact on bacterial populations and the microbial community. The bacterial population and phages persisted in the leaf and shoot environment as long as the bacterial host was present. In contrast to in vitro studies, the plant environment constrained the emergence of phage resistant Pss populations. Application of phage cocktail in the orchard did not affect the cherry leaf microbiome. These observations provide essential knowledge for using phage treatments to control bacterial diseases while minimising the impact on the plant microbiome, highlighting phages' potential to safely control bacterial diseases in trees.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.70076DOI Listing

Publication Analysis

Top Keywords

bacterial diseases
12
pseudomonas syringae
8
syringae syringae
8
plant microbiome
8
field experiments
8
bacterial population
8
control bacterial
8
bacterial
7
phages
6
phage
6

Similar Publications

Ventilator-associated pneumonia (VAP) is a frequent complication in injured patients. Multiplex polymerase chain reaction (PCR) facilitates rapid identification of many respiratory pathogens prior to formal culture results. Our objective was to evaluate the effect of multiplex PCR implementation in a trauma intensive care unit (TICU) on antibiotic utilization and de-escalation.

View Article and Find Full Text PDF

Integration of Photodiagnosis and Therapy Guided by Micro/Nanorobots.

Adv Mater

March 2025

Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.

Micro/Nanorobots(MNRs)integrated with phototherapy represent an emerging approach to cancer treatment and hold significant potential for addressing bacterial infections, neurological disorders, cardiovascular diseases, and related conditions. By leveraging micro/nanoscale motor systems in conjunction with phototherapy, these robots enable real-time guidance and monitoring of therapeutic processes, improving drug delivery precision and efficiency. This integration not only enhances the effectiveness of phototherapy but also minimizes damage to surrounding healthy tissues.

View Article and Find Full Text PDF

Background: () is a widely prevalent intracellular parasite that infects almost all warm-blooded animals and causes serious public health problems. The drugs currently used to treat toxoplasmosis have the disadvantage of being toxic and prone to the development of resistance, and the only licensed vaccine entails a risk of virulence restoration. The development of a safe and effective vaccine against is urgently needed.

View Article and Find Full Text PDF

The status of coinfection during the national outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.5.2 or BF.

View Article and Find Full Text PDF

Background: The gut microbiota plays a pivotal role in various metabolic disorders. Orlistat has shown beneficial effects on weight loss and metabolism, but its direct impact on the gut microbiota has not been extensively reported. Thus, this study aimed to explore the effects of orlistat on the gut microbiota in mice with high-fat diet-induced obesity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!