X-linked Alport syndrome (XLAS) caused by X-linked COL4A5 gene mutation is a hereditary disease that affects mainly the kidney. XLAS patients, especially males whose single copy of the COL4A5 gene is disrupted, suffer from a life-threatening renal disease, the mechanism of which remains unclear. Renal fibrosis is a characteristic pathology observed in XLAS kidney tissue. However, the molecular path from COL4A5 loss-of-function to fibrotic pathology is largely unknown. On the basis of a previously established XLAS mouse model, our study revealed an activated CD44-TGFβ signaling known to strongly promote fibrosis, along with an increased level of low molecular weight hyaluronan (LMW-HA) instead of high molecular weight hyaluronan (HMW-HA), to activate CD44-dependent TGFβ signaling in XLAS renal tissues. Additionally, hyaluronan synthase 2 (HAS2), an enzyme primarily responsible for HA production, was found to be upregulated in XLAS. In particular, in vitro studies revealed that COL4A5 knockdown in human kidney-derived HEK-293 cells can upregulate HAS2 at both the RNA and protein levels. The novel contribution of our study is finding that COL4A5 deficiency may lead to HAS2 overexpression and HA accumulation to activate CD44-TGFβ signaling, thereby promoting fibrosis, possibly suggesting that HAS2 and CD44 are potential therapeutic targets for impeding renal fibrosis in XLAS.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s10020-025-01146-0DOI Listing

Publication Analysis

Top Keywords

renal fibrosis
12
col4a5 gene
8
cd44-tgfβ signaling
8
molecular weight
8
weight hyaluronan
8
xlas
7
col4a5
6
renal
5
fibrosis
5
increased ha/cd44/tgfβ
4

Similar Publications

Recent research has revealed a close association between obesity and various metabolic disorders, including renal metabolic diseases, but the mechanism is still unknown. This study explored the role of p16INK4a in obesity-related kidney fibrosis and evaluated its potential as a therapeutic target. Using wild-type (WT) mice and p16 KO mice, we fed both groups a high-fat diet (HFD) for 6 months.

View Article and Find Full Text PDF

Beneficial Effects of Butyrate on Kidney Disease.

Nutrients

February 2025

Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.

The gut microbiota influences and contributes to kidney health and disease. Butyrate, a short-chain fatty acid molecule generated via the fermentation of gut bacterial catabolism of nondigestible dietary fiber, has been shown to exert numerous beneficial effects on kidney disorders. The objective of this review was to discuss the latest findings on the protective effects of butyrate on a variety of animal models of kidney injury.

View Article and Find Full Text PDF

Differential Myocardial Responses in Male and Female Rats with Uremic Cardiomyopathy.

Int J Mol Sci

March 2025

Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary.

Uremic cardiomyopathy, characterized by diastolic dysfunction, left ventricular hypertrophy (LVH), and fibrosis, is a common cardiovascular complication of chronic kidney disease (CKD). Men are at a higher risk for cardiovascular and renal diseases, compared to age-matched, pre-menopausal women. We aimed to investigate the influence of sex on the severity of uremic cardiomyopathy through the characterization of functional and molecular indices of myocardial remodeling in a rat model.

View Article and Find Full Text PDF

Induced Genetic Deletion of Cell Division Autoantigen 1 in Adulthood Attenuates Diabetes-Associated Renal Fibrosis.

Int J Mol Sci

February 2025

Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia.

Cell Division Autoantigen 1 (CDA1) has been shown to play a role in enhancing transforming growth factor beta (TGFβ) signaling, leading to fibrosis in diabetic kidney disease (DKD) using mouse strains with global CDA1 gene deletion. In these models, diabetes has been induced, leading to DKD in the absence of CDA1. It is still unknown whether inhibition of CDA1 activity after onset of diabetes in the presence of CDA1 can attenuate renal fibrosis in vivo.

View Article and Find Full Text PDF

Integrin-Linked Kinase (ILK) Promotes Mitochondrial Dysfunction by Decreasing CPT1A Expression in a Folic Acid-Based Model of Kidney Disease.

Int J Mol Sci

February 2025

Department of Systems Biology, Universidad de Alcalá, Instituto Ramon y Cajal de Investigación Sanitaria, RICORS 2040, Fundación Renal Iñigo Álvarez de Toledo, INNOREN-CM, Alcalá de Henares, 28871 Madrid, Spain.

Integrin-linked kinase (ILK) is a key scaffolding protein between extracellular matrix protein and the cytoskeleton and has been implicated previously in the pathogenesis of renal damage. However, its involvement in renal mitochondrial dysfunction remains to be elucidated. We studied the role of ILK and its downstream regulations in renal damage and mitochondria function both in vivo and vitro, using a folic acid (FA)-induced kidney disease model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!