A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrostatic enhanced terahertz metamaterial biosensing via gold nanoparticles integrated with biomolecules. | LitMetric

Electrostatic enhanced terahertz metamaterial biosensing via gold nanoparticles integrated with biomolecules.

Sci Rep

Center for Terahertz Waves and Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China.

Published: March 2025

Terahertz spectroscopy has drawn great interest for the detection and characterization of biological matter, but its limited sensitivity to biomolecules with weak changes in dielectric properties with varying concentration has hinders potential bio-sensing applications. Here, a novel terahertz sensor was developed for enhancing the ability to detect biomolecules based on two electromagnetically induced transparency (EIT) metamaterials coupled with gold nanoparticles (AuNPs) integrated with biomolecules. The electrostatic interaction between AuNPs and positively charged biomolecules generates localized field enhancement at the biomolecule-metamaterial interface, resulting in a threefold increase in sensitivity for positively charged histidine that exhibit weak dielectric property changes with varying concentration. As a contrast, glucose shows a weaker effect due to its electrostatically neutral nature. Experimental studies reveal that by evaluating the modulation depth (MD) and modulation enhancement (ME) factors of the transmission peak for histidine and glucose in the presence of AuNPs, we achieve and enhance intuitive detection and discrimination of these biomolecules. Additionally, a two-EIT metamaterial with a 1 × 2 pixel array enables multiparameter imaging, visualizing the concentration and spatial distribution of biomolecules. Our results not only significantly improve the response sensitivity of biomolecules with weak dielectric properties in the terahertz domain, but also provide a new idea for developing high-sensitivity functionalized terahertz biosensors and advancing multi-biomolecular analysis and imaging techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-025-93850-4DOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
8
biomolecules
8
integrated biomolecules
8
sensitivity biomolecules
8
biomolecules weak
8
dielectric properties
8
varying concentration
8
positively charged
8
weak dielectric
8
terahertz
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!