Administration of Porphyromonas gingivalis in pregnant mice enhances glycolysis and histone lactylation/ADAM17 leading to cleft palate in offspring.

Int J Oral Sci

Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.

Published: March 2025

Periodontal disease is a risk factor for many systemic diseases such as Alzheimer's disease and adverse pregnancy outcomes. Cleft palate (CP), the most common congenital craniofacial defect, has a multifaceted etiology influenced by complex genetic and environmental risk factors such as maternal bacterial or virus infection. A prior case-control study revealed a surprisingly strong association between maternal periodontal disease and CP in offspring. However, the precise relationship remains unclear. In this study, the relationship between maternal oral pathogen and CP in offspring was studied by sonicated P. gingivalis injected intravenously and orally into pregnant mice. We investigated an obvious increasing CP (12.5%) in sonicated P. gingivalis group which had inhibited osteogenesis in mesenchyme and blocked efferocytosis in epithelium. Then glycolysis and H4K12 lactylation (H4K12la) were detected to elevate in both mouse embryonic palatal mesenchyme (MEPM) cells and macrophages under P. gingivalis exposure which further promoted the transcription of metallopeptidase domain17 (ADAM17), subsequently mediated the shedding of transforming growth factor-beta receptor 1 (TGFBR1) in MEPM cells and mer tyrosine kinase (MerTK) in macrophages and resulted in the suppression of efferocytosis and osteogenesis in palate, eventually caused abnormalities in palate fusion and ossification. The abnormal efferocytosis also led to a predominance of M1 macrophages, which indirectly inhibited palatal osteogenesis via extracellular vesicles. Furthermore, pharmacological ADAM17 inhibition could ameliorate the abnormality of P. gingivalis-induced abnormal palate development. Therefore, our study extends the knowledge of how maternal oral pathogen affects fetal palate development and provides a novel perspective to understand the pathogenesis of CP.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41368-025-00347-xDOI Listing

Publication Analysis

Top Keywords

pregnant mice
8
cleft palate
8
periodontal disease
8
maternal oral
8
oral pathogen
8
sonicated gingivalis
8
mepm cells
8
palate development
8
palate
6
administration porphyromonas
4

Similar Publications

Patients with severe hemophilia A (HA) often develop undesired immune responses to therapeutic factor VIII (FVIII) that hamper replacement therapy with FVIII-derived products. The transplacental delivery of two Fc-fused FVIII domains in pregnant HA mice was shown to induce partial FVIII-specific immune tolerance in the offspring. Here, we evaluated whether the transplacental delivery of Fc-fused FVIII (rFVIIIFc) induces complete immune tolerance towards FVIII.

View Article and Find Full Text PDF

Administration of Porphyromonas gingivalis in pregnant mice enhances glycolysis and histone lactylation/ADAM17 leading to cleft palate in offspring.

Int J Oral Sci

March 2025

Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.

Periodontal disease is a risk factor for many systemic diseases such as Alzheimer's disease and adverse pregnancy outcomes. Cleft palate (CP), the most common congenital craniofacial defect, has a multifaceted etiology influenced by complex genetic and environmental risk factors such as maternal bacterial or virus infection. A prior case-control study revealed a surprisingly strong association between maternal periodontal disease and CP in offspring.

View Article and Find Full Text PDF

infects the placenta of its natural bovine host, which results in abortion and transmission of infection to other cattle and to humans. While the metabolism of during chronic infection of the mononuclear phagocyte system has been studied, the nutrients fueling growth of in the placenta are unknown. We found that in mice, glucose is an important carbon source for in the placenta.

View Article and Find Full Text PDF

Despite the high frequency of pregnancies complicated by abnormal glucose metabolism associated with obesity, methylmercury (MeHg) metabolism in pregnant women with abnormal glucose metabolism is unclear. We aimed to elucidate the MeHg tissue distribution in obese female mice with abnormal glucose metabolism and their fetuses. Female C57BL/6J mice were fed a high-fat diet (HFD) or a standard diet (Ctrl) for 12 weeks and mated.

View Article and Find Full Text PDF

Exposure to di-n-butyl phthalate (DBP) during embryo development or lactation has been linked to reproductive toxicity. The ten-eleven translocation (TET) protein family plays a role in various pathological processes; however, its involvement in reproductive dysfunction in offspring mice exposed to DBP during gestation remains sparsely reported. In this study, SPF C57BL/6 pregnant mice were intragastrically administered DBP at doses of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!