COVID-19 vaccines are crucial in reducing SARS-CoV-2 transmission and severe health outcomes. Despite widespread administration, their long-term systemic effects on human metabolism remain inadequately understood. This longitudinal study aims to evaluate IgG responses, 34 cytokines, 112 lipoproteins, and 21 low-molecular-weight metabolites in 33 individuals receiving two to four COVID-19 vaccine doses. Changes in metabolic profiles for the first 16 days post each dose of vaccine, and up to 480 days post-initial dose, were compared to baseline (before vaccination). Additionally, metabolic profiles of vaccinated participants were compared to a reference cohort of unvaccinated individuals without prior exposure to SARS-CoV-2 infection (controls) and SARS-CoV-2 cases. Positive IgG responses were observed in 78.8% (N = 26) of participants after the first dose, reaching 100% with subsequent doses. The most common side effects were localized pain at the injection site and "flu-like" symptoms, reported by > 50% of participants. Systemic side effects, e.g., sore lymph nodes, fatigue, and brain fog, were reported but showed no significant correlations to IgG responses. Transient temporal changes were observed for cytokine IP10 (CXCL10) and glutamic acid around the third vaccine dose. Compared to the reference cohort, 497 vaccinated samples (95.0%) had profiles similar to the controls, while the remaining 26 samples with prior infection exposures were similar to mild cases of SARS-CooV-2 infection. In conclusion, COVID-19 vaccination did not induce lasting changes in inflammatory and metabolic responses, nor did it induce changes similar to mild cases of SARS-CoV-2 infection. This supports the metabolic safety of the vaccine and contributes to increased vaccine confidence. KEY MESSAGES: Minimal changes in inflammatory/metabolic markers up to 480 days post-vaccination. Transient increase in IP10 (CXCL10) and glutamic acid around the third dose. Post-vaccination IgG response did not alter metabolic profiles like SARS-CoV-2 cases. Our findings provide insights into the safety of repeated COVID-19 vaccinations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00109-025-02527-y | DOI Listing |
Front Immunol
March 2025
Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.
Background: () is a widely prevalent intracellular parasite that infects almost all warm-blooded animals and causes serious public health problems. The drugs currently used to treat toxoplasmosis have the disadvantage of being toxic and prone to the development of resistance, and the only licensed vaccine entails a risk of virulence restoration. The development of a safe and effective vaccine against is urgently needed.
View Article and Find Full Text PDFBiosaf Health
June 2024
Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
Inactivated coronavirus disease 2019 (COVID-19) vaccines such as CoronaVac and BBIBP-CorV have been widely used in China. However, more investigation is still needed to understand antibodies' duration and effectiveness against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in the real world. In this study, 575 participants who had been vaccinated with two or three doses of the inactivated vaccine were recruited.
View Article and Find Full Text PDFImmunology
March 2025
Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo, Brazil.
The association between COVID-19 and autoimmune diseases has gained increasing recognition, yet the specific targets of SARS-CoV-2-induced IgG are currently in focus for several studies. This study aims to explore the proteomic targets of these antibodies and their potential role in autoimmunity. We utilised a human proteome microarray encompassing 23 736 unique proteins, including isoform variants and fragments, as catalogued by the Human Protein Atlas.
View Article and Find Full Text PDFNutrients
February 2025
Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
: Exposure to fine particulate matter (PM) causes significant respiratory and gastrointestinal health problems. In our prior research, we identified TW01 as a promising strain for mitigating oxidative damage, enhancing wound healing in intestinal epithelial cells, and protecting bronchial cells from cigarette smoke extract. Building upon these findings, this study examines the protective effects of this strain on lung damage induced by particulate matter (PM) through the gut-lung axis in mouse models.
View Article and Find Full Text PDFInt J Mol Sci
February 2025
Physiology and Pharmacology Department, Chemistry and Pharmacy Faculty, Universidad de El Salvador, San Salvador 01101, El Salvador.
Receptors for the immunoglobulin G constant fraction (FcγRs) are widely expressed in cells of the immune system. Complement-independent phagocytosis prompted FcγR research to show that the engagement of IgG immune complexes with FcγRs triggers a variety of cell host immune responses, such as phagocytosis, antibody-dependent cell cytotoxicity, and NETosis, among others. However, variants of these receptors have been implicated in the development of and susceptibility to autoimmune diseases such as systemic lupus erythematosus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!