Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The yellow stemborer, Scirpophaga incertulas, is a monophagous pest of rice, attacking the crop from its vegetative to reproductive stages. Microorganisms are crucial in influencing the insect's life cycle, evolution, and ecology, presenting an avenue for understanding and improving management strategies. Present research employed advanced next-generation sequencing technology to investigate the microbiota of S. incertulas, a previously unexplored area for developmental stage associated microbial diversity. The study used 16 S rRNA V3-V4 region amplicon sequencing to determine the diversity of bacteria associated with different developmental stages of S. incertulas. Taxonomically, bacterial communities were classified into 25 phyla, encompassing 46 classes, 101 orders, 197 families, and 364 genera. The major phyla identified were Proteobacteria (39%), Firmicutes (39%), Actinobacteria (11%), and Bacteroidetes (7%), with Proteobacteria being the most predominant across all developmental stages except the larval stage, where Firmicutes took precedence. Moraxellaceae, Bacillaceae, Xanthomonadaceae, Sphingobacteriaceae, and Flavobacteriaceae were predominant families across all the developmental stages. However, in the egg and adult stages, the abundance of Bacillaceae was notably lower, whereas Prevotellaceae found significantly higher in adult stages. Dominant genera across all stages included Acinetobacter, Bacillus, Lactobacillus, Enterococcus, and Pseudomonas. The result showed that the highest number of Operational Taxonomic Units (OTUs) were in the larval stage (426 OTUs), the lowest in adults (251 OTUs), and the egg stage (254 OTUs). This suggests that the microbiota may play a role in the growth and development of S. incertulas. The predicted functional assessment of the associated S. incertulas microbiota revealed that the microbiota primarily participated in metabolic pathways, secondary metabolite biosynthesis, energy metabolism, signaling, and cellular processes. Our findings shed light on the significant variations in the microbial community and their predicted functions present in S. incertulas across developmental stages. The present study findings will help in developing novel microbiota-based management strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-025-93048-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!