Organic-inorganic halocuprates(I) form a promising class of light-emitting materials with high photoluminescence (PL) quantum yield. However, the understanding of their emission properties and the PL mechanism is still limited. Here, we investigate thin films of bis(tetrapropylammonium) hexa-µ-bromo-tetrahedro-tetracuprate(I), [N(C3H7)4]2[Cu4Br6], which has a zero-dimensional (0D) molecular salt structure containing [Cu4Br6]2- ions. The compound shows a bright orange PL, consisting of two bands, with a quantum yield of about 95% at room temperature. An analysis of the temperature-dependent width of the two emission bands provides large Huang-Rhys factors of 81 and 33, which are assigned to two self-trapped exciton states (denoted as STE1 and STE2) with different excited-state structures of the anion. For both STE bands, a decrease of the lifetime from 82 to 32 µs over the temperature range 80-323 K is accompanied by an increase of the PL band integral, indicating an unusual negative thermal quenching process. The microsecond lifetimes are consistent with a phosphorescence process. Broadband transient absorption experiments from the femto- to the microsecond regime provide a time constant for S1 → T1 intersystem crossing (ISC) step of 490 ps and time scales for the cooling processes in S1 and T1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.202401143 | DOI Listing |
ACS Appl Mater Interfaces
March 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
Developing vapor-solid reaction methods to prepare organic-inorganic hybrid perovskite thin films is highly compatible with processes in crystalline silicon solar cells and the thin-film photovoltaic industries, facilitating rapid industrialization. In the vapor-solid reaction, the crystallization quality of perovskite thin films is widely influenced by the crystallinity and microstructure of lead iodide (PbI) precursor films. During the thermal evaporation process of preparing the PbI precursor films, we observed that PbI tends to develop a disordered surface morphology and exhibits high crystallinity, which significantly hinders the uniform diffusion of the organic amine salt vapor during the subsequent vapor-solid reaction.
View Article and Find Full Text PDFChemphyschem
March 2025
Universität Siegen, Physikalische Chemie, Adolf-Reichwein-Str. 2, 57076, Siegen, GERMANY.
Organic-inorganic halocuprates(I) form a promising class of light-emitting materials with high photoluminescence (PL) quantum yield. However, the understanding of their emission properties and the PL mechanism is still limited. Here, we investigate thin films of bis(tetrapropylammonium) hexa-µ-bromo-tetrahedro-tetracuprate(I), [N(C3H7)4]2[Cu4Br6], which has a zero-dimensional (0D) molecular salt structure containing [Cu4Br6]2- ions.
View Article and Find Full Text PDFSci Total Environ
March 2025
SINTEF Ocean AS, Dept. Climate and Environment, Trondheim, Norway.
Seasonal dynamics can vastly influence the natural depletion of oil spilled into the ocean and the Arctic regions are characterized by large seasonal changes, especially in temperature and daylight. To determine the influences of seasonal variation on natural oil depletion processes like dissolution, photooxidation and biodegradation, we deployed thin films of three oils in natural seawater during the Arctic summer and winter in Svalbard, Norway. The extent of oil depletion varied with season and the type of the oil, however, considerable depletion of n-alkanes and polycyclic aromatic compounds were observed during both summer and winter.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2025
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; Heilongjiang Provincial Key Laboratory of Advanced Quantum Functional Materials and Sensor Devices, Harbin 150001, China. Electronic address:
Optical synaptic devices (OSDs) have neuromorphic vision sensing capability showing great potential in breaking the von Neumann bottleneck and facilitating future artificial vision systems. However, the applications of two-dimensional (2D) material-based OSDs are still impeded by complicated structures, preparation techniques and so on. In this work, we propose a 2D OSD based on BiSe films prepared by a chemical vapor deposition method followed by an in-situ thermal treatment.
View Article and Find Full Text PDFWe report the cosolvency effect of formamidinium lead triiodide (FAPbI) in a mixture of γ-butyrolactone (GBL) and 2-methoxyethanol (2ME), a phenomenon where FAPbI shows higher solubility in the solvent blend than in either alone. We found that FAPbI exhibits 10× higher solubility in 30% 2ME in GBL than in 2ME alone and 40% higher solubility than in GBL alone at 90 °C. This enhanced solubility is attributed to the disruption of the hydrogen bonding network within 2ME, allowing its hydroxyl and ether groups to interact more freely with the solute.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!